The physical properties of four ionic liquids (ILs), including 1--butyl-3-methylimidazolium tetrafluoroborate ([CCim][BF]), 1--butyl-3-methylimidazolium hexafluorophosphate ([CCim][PF]), 1--butyl-3-methylimidazolium thiocyanate ([CCim][SCN]), and 1--hexyl-3-methylimidazolium chloride ([CCim][Cl]), and their mixtures with hydrofluorocarbon (HFC) gases HFC-32 (CHF), HFC-125 (CHFCF), and HFC-410A, a 50/50 wt % mixture of HFC-32 and HFC-125, were studied using molecular dynamics (MD) simulation. Experiments were conducted to measure the density, self-diffusivity, and shear viscosity of HFC/[CCim][BF] system. Extensive analyses were carried out to understand the effect of IL structure on various properties of the HFC/IL mixtures. Density, diffusivity, and viscosity of the pure ILs were calculated and compared with experimental values. The good agreement between computed and experimental results suggests that the applied force fields are reliable. The calculated center of mass (COM) radial distribution functions (RDFs), partial RDFs, spatial distribution functions (SDFs), and coordination numbers (CNs) provide a sense of how the distribution of HFC changes in the liquid mixtures with IL structure. Detailed analysis reveals that selectivity toward HFC-32 and HFC-125 depends on both cation and anion. The molecular insight provided in the current work will help the design of optimal ILs for the separation of azeotropic HFC mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c05787DOI Listing

Publication Analysis

Top Keywords

liquid mixtures
8
molecular dynamics
8
hfc-32 hfc-125
8
distribution functions
8
mixtures
5
structure dynamics
4
dynamics hydrofluorocarbon/ionic
4
hydrofluorocarbon/ionic liquid
4
mixtures experimental
4
experimental molecular
4

Similar Publications

Visually appealing foods are often associated by consumers with subjective quality features, such as freshness, palatability, and shelf life. In the past, there have been repeated violations in which regulations on the use of pigments in food were ignored and/or unauthorized or toxic dyes (e.g.

View Article and Find Full Text PDF

Millimeter-scale radioluminescent power for electronic sensors.

iScience

January 2025

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.

The storage and generation of electrical energy at the mm-scale is a core roadblock to realizing many untethered miniature systems, including industrial, environmental, and medically implanted sensors. We describe the potential to address the sensor energy requirement in a two-step process by first converting alpha radiation into light, which can then be translated into electrical power through a photovoltaic harvester circuit protected by a clear sealant. Different phosphorescent and scintillating materials were mixed with the alpha-emitter Th-227, and the conversion efficiency of europium-doped yttrium oxide was the highest at around 2%.

View Article and Find Full Text PDF

Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.

View Article and Find Full Text PDF

Accurately predicting the phase behavior and properties of reservoir fluid plays an essential role in the simulation of petroleum recovery processes. Similar to the inaccurate liquid-density prediction issue in the isobaric-isothermal (PT) phase equilibrium calculations, an inaccurate pressure prediction issue can also be observed in isothermal-isochoric (VT) phase equilibrium calculations which involves a liquid phase. In this work, a practical methodology is proposed to incorporate a volume-translated equation of state in VT phase equilibrium calculations for more accurate pressure predictions.

View Article and Find Full Text PDF

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!