T cell-engaging bispecific antibodies (TCEs) are clinically effective treatments for hematological cancers. While the utility of TCEs in solid malignancies is being explored, toxicities arising from antigen expression on normal tissues have slowed or halted several clinical trials. Here, we describe the development of TCEs that preferentially drive T cell-mediated death against target cells co-expressing two tumor-associated antigens. We show that Ly6E and B7-H4 are simultaneously expressed on approximately 50% of breast cancers, whereas normal tissue expression is limited and mostly orthogonal. Traditional bispecific TCEs targeting a singular antigen, either Ly6E or B7-H4, are active when paired with high-affinity CD3-engagers, but normal tissue expression presents a toxicity risk. Treatment with a murine cross-reactive B7-H4-TCE results in rapid and severe weight loss in mice along with damage to B7-H4-expressing tissues. To overcome on-target toxicity, we designed trispecific antibodies co-targeting Ly6E, B7-H4, CD3 and characterized the impact of dual-antigen binding and the relative placement of each binding domain on tumor killing and killing of tumor cells co-expressing both antigens correlates to the placement of the higher affinity B7-H4 binding domain, with only modest enhancements seen upon addition of Ly6E binding. In xenograft models, avid binding of appropriately designed trispecific TCEs enables tumor growth inhibition while evading the poor tolerability seen with active bispecific TCEs. Collectively these data highlight the potential for dual-antigen targeting to improve safety and efficacy, and expand the scope of tumors that may effectively be treated by TCEs. Chimeric antigen receptor T cells (CAR-Ts), dual-antigen targeted T cell engagers (DAT-TCE), Fragment antigen-binding (Fab), Hematoxylin and eosin (H&E), Institutional Animal Care and Use Committee (IACUC), Immunoglobulin G (IgG), immunohistochemistry (IHC), NOD SCID gamma (NSG), peripheral blood mononuclear cells (PBMCs), surface plasmon resonance (SPR), T cell-engagers (TCEs).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553182 | PMC |
http://dx.doi.org/10.1080/19420862.2022.2115213 | DOI Listing |
J Cell Mol Med
January 2025
Institute of Molecular Medicine, Huaqiao University, Quanzhou, China.
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China. Electronic address:
Yes-associated protein (YAP), a focal point of current biological research, is involved in regulating various life processes. In this report, live-cell fluorescence resonance energy transfer (FRET) imaging was employed to unravel the YAP complexes in MCF-7 cells. Fluorescence imaging of living cells co-expressing CFP (cyan fluorescent protein)-YAP and YFP (yellow fluorescent protein)-LATS1 (large tumor suppressor 1) plasmids revealed that YAP promoted LATS1 oligomerization around mitochondria.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
Bio Protoc
January 2025
Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
Neurons are highly polarized cells, with axons that may innervate distant target regions. In the brain, basal forebrain cholinergic neurons (BFCNs) possess extensive axons that project to several target regions such as the cortex, hippocampus, and amygdala, and may be exposed to a specific microenvironment in their axon targets that may have retrograde effects on neuronal health. Interestingly, BFCNs express the pan-neurotrophin receptor p75NTR throughout life while also concomitantly co-expressing all Trk receptors, making them capable of responding to both mature and precursor neurotrophins to promote survival or apoptosis, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!