First-principles calculations within DFT have been performed to investigate the use of a recently synthesized form of silicene, the dumbbell (DB) silicene as an anode material for Li-ion batteries (LiBs). The energetically most stable geometries for Li adsorption on DB silicene were investigated, and the energy barriers for Li-ion diffusion among the possible stable adsorption sites were calculated. We found that DB silicene can be lithiated up to a ratio of 1.05 Li per Si atom, resulting in a high storage capacity of 1002 mA h g and an average open-circuit potential of 0.38 V, which makes DB silicene suitable for applications as an anode in LiBs. The energy barrier for Li-ion diffusion was calculated to be as low as 0.19 eV, suggesting that the Li ions can easily diffuse on the entire DB silicene surface, decreasing the time for the charge/discharge process of the LiBs. Our detailed investigations show that the most stable form of two-dimensional silicon has characteristic features suitable for application in high-performance LiBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c13535 | DOI Listing |
Beilstein J Nanotechnol
May 2023
Department of Computational Science, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
The ability of various interatomic potentials to reproduce the properties of silicene, that is, 2D single-layer silicon, polymorphs was examined. Structural and mechanical properties of flat, low-buckled, trigonal dumbbell, honeycomb dumbbell, and large honeycomb dumbbell silicene phases, were obtained using density functional theory and molecular statics calculations with Tersoff, MEAM, Stillinger-Weber, EDIP, ReaxFF, COMB, and machine-learning-based interatomic potentials. A quantitative systematic comparison and a discussion of the results obtained are reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Physics Department, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil.
First-principles calculations within DFT have been performed to investigate the use of a recently synthesized form of silicene, the dumbbell (DB) silicene as an anode material for Li-ion batteries (LiBs). The energetically most stable geometries for Li adsorption on DB silicene were investigated, and the energy barriers for Li-ion diffusion among the possible stable adsorption sites were calculated. We found that DB silicene can be lithiated up to a ratio of 1.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2021
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Brazil.
Single layers of hexagonal boron nitride (h-BN) and silicene are brought together to form h-BN/silicene van der Waals (vdW) heterostructures. The effects of external electric fields and compressive strain on their structural and electronic properties are systematically studied through first principles calculations. Two silicene phases are considered: the low-buckled Si(LB) and the dumbbell-like Si(DB).
View Article and Find Full Text PDFSci Rep
July 2021
Faculty of Basic, Tay Do University, Can Tho city, Viet Nam.
Using density functional theory (DFT), we performed theoretical investigation on structural, energetic, electronic, and magnetic properties of pure armchair silicene nanoribbons with edges terminated with hydrogen atoms (ASiNRs:H), and the absorptions of silicon (Si) atom(s) on the top of ASiNRs:H. The calculated results show that Si atoms prefer to adsorb on the top site of ASiNRs:H and form the single- and/or di-adatom defects depending on the numbers. Si absorption defect(s) change electronic and magnetic properties of ASiNRs:H.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2020
Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany.
The semimetallic bandstructure of graphene and silicene limit their use in functional devices. Mixing silicon and carbon offers a rather unexplored pathway to build semiconducting sheets compatible with current Si-based electronics. We present here a complete theoretical study of the phase diagram of two-dimensional silicon-carbon binaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!