The host restriction factor serine incorporator 5 (SERINC5) plays a key role in inhibiting viral activity and has been shown to inhibit classical swine fever virus (CSFV) infection. However, the action of SERINC5 in the interaction between host cells and CSFV remains poorly understood. This study found that SERINC5 represses CSFV-induced autophagy through MAPK1/3-mTOR and AKT-mTOR signalling pathways. Further research showed that SERINC5 promotes apoptosis by repressing autophagy. Likewise, it was demonstrated that SERINC5 interacting proteins IFITM1/2/3 inhibit CSFV replication and regulate autophagy in a lysosomal-associated membrane protein LAMP1-dependent manner. In addition, IFITM1/2/3 interference promotes the NF-κB signalling pathway for potential immunoregulation by inhibiting autophagy. Finally, the functional silencing of IFITM1/2/3 genes was demonstrated to enhance the inhibitory effect of SERINC5 on autophagy. Taken together, These data uncover a novel mechanism through SERINC5 and its interacting proteins IFITM1/2/3, which mediates CSFV replication, and provides new avenues for controlling CSFV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553151PMC
http://dx.doi.org/10.1080/21505594.2022.2127241DOI Listing

Publication Analysis

Top Keywords

csfv infection
8
serinc5 interacting
8
interacting proteins
8
proteins ifitm1/2/3
8
csfv replication
8
serinc5
7
csfv
6
ifitm1/2/3
5
autophagy
5
interaction serinc5
4

Similar Publications

Some viruses can suppress superinfections of their host cells by related or different virus species. The phenomenon of superinfection exclusion can be caused by inhibiting virus attachment, receptor binding and entry, by replication interference, or competition for host cell resources. Blocking attachment and entry not only prevents unproductive double infections but also stops newly produced virions from re-entering the cell post-exocytosis.

View Article and Find Full Text PDF

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

The Prevalence and Genetic Characteristics of Porcine Circovirus Type 2 in Shandong Province, China, 2018-2020.

Curr Issues Mol Biol

November 2024

College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China.

Porcine circovirus type 2 (PCV2) is an important swine pathogen that has caused considerable economic losses in the global swine industry. During our surveillance of pigs in Shandong, China, from 2018 to 2020, we found that the PCV2 infection rate was 7.89% (86/1090).

View Article and Find Full Text PDF

Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV.

View Article and Find Full Text PDF

Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!