The presence of so-called reversible and irreversible protein adsorption on solid surfaces is well documented in the literature and represents the basis for the development of nanoparticles and implant materials to control interactions in physiological environments. Here, using a series of complementary single-molecule tracking approaches appropriate for different timescales, we show that protein desorption kinetics is much more complex than the traditional reversible-irreversible binary picture. Instead, we find that the surface residence time distribution of adsorbed proteins transitions from power law to exponential behavior when measured over a large range of timescales (10-10 s). A comparison with macroscopic results obtained using a quartz crystal microbalance suggested that macroscopic measurements have generally failed to observe such nonequilibrium phenomena because they are obscured by ensemble-averaging effects. These findings provide new insights into the complex phenomena associated with protein adsorption and desorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.2c00917 | DOI Listing |
J Sep Sci
January 2025
Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China.
A comprehensive strategy, including spectroscopic, molecular simulation, proteomics, and bioinformatics techniques, was employed to investigate a novel triazole, 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole, its interactions with high-abundance blood proteins, and identification of low-abundance proteins. The binding constants and thermodynamic parameters of the triazole to two high-abundance blood globular proteins, human serum albumin, and human immunoglobulin G (HIgG), were obtained by spectroscopic techniques and computational chemistry. The two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed to isolate and identify differentially expressed low-abundance proteins in human blood serum samples following exposure to the triazole.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes.
View Article and Find Full Text PDFJ Mol Recognit
January 2025
Unit of Molecular Entomology, Department of Zoology, University of Madras, Chennai, India.
Lectins that can recognize and bind to carbohydrates and glycoconjugates are at the epicentre of research owing to their prospective applications. In the present study, a D-fucose binding lectin from the serum of darkling beetle, Zophobas morio was purified and their mitogenic potential over human B-cells was evaluated. Biochemical assays on the preliminary characterization revealed the occurrence of single D-fucose binding lectin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!