AI Article Synopsis

  • The study investigates how cold air exposure affects blood pressure and the roles of skin and skeletal muscle in this response.
  • Whole-body cooling significantly raises blood pressure by increasing vascular resistance in both skeletal muscles and skin, while isolated face cooling primarily increases blood pressure through skin vasoconstriction.
  • These findings highlight the distinct contributions of different body regions in the cold-induced rise in blood pressure, which is important for understanding physiological responses to cold.

Article Abstract

New Findings: What is the central question of this study? Why does blood pressure increases during cold air exposure? Specifically, what is the contribution of skin and skeletal muscle vascular resistance during whole body versus isolated face cooling? What is the main finding and its importance? Whole-body cooling caused an increase in blood pressure through an increase in skeletal muscle and cutaneous vascular resistance. However, isolated mild face cooling caused an increase in blood pressure predominately via an increase in cutaneous vasoconstriction.

Abstract: The primary aim of this investigation was to determine the individual contribution of the cutaneous and skeletal muscle circulations to the cold-induced pressor response. To address this, we examined local vascular resistances in the cutaneous and skeletal muscle of the arm and leg. Thirty-four healthy individuals underwent three different protocols, whereby cold air to clamp skin temperature (27°C) was passed over (1) the whole-body, (2) the whole-body, but with the forearm pre-cooled to clamp cutaneous vascular resistance, and (3) the face. Cold exposure applied to the whole body or isolated to the face increased mean arterial pressure (all, P < 0.001) and total peripheral resistance (all, P < 0.047) compared to thermal neutral baseline. Whole-body cooling increased femoral (P < 0.005) and brachial artery resistance (P < 0.003) compared to thermoneutral baseline. Moreover, when the forearm was pre-cooled to remove the contribution of cutaneous resistance (P = 0.991), there was a further increase in lower arm vasoconstriction (P = 0.036) when whole-body cooling was superimposed. Face cooling also caused a reflex increase in lower arm cutaneous (P = 0.009) and brachial resistance (P = 0.050), yet there was no change in femoral resistance (P = 0.815) despite a reflex increase in leg cutaneous resistance (P = 0.010). Cold stress causes an increase in blood pressure through a change in total peripheral resistance that is largely due to cutaneous vasoconstriction with face cooling, but there is additional vasoconstriction in the skeletal muscle vasculature with whole-body cooling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092517PMC
http://dx.doi.org/10.1113/EP090563DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
blood pressure
16
vascular resistance
16
skin skeletal
8
muscle vascular
8
cold air
8
isolated face
8
cooling caused
8
caused increase
8
increase blood
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!