J Exp Bot
Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia.
Published: March 2023
Crop growth models (CGM) can predict the performance of a cultivar in untested environments by sampling genotype-specific parameters. As they cannot predict the performance of new cultivars, it has been proposed to integrate CGMs with whole genome prediction (WGP) to combine the benefits of both models. Here, we used a CGM-WGP model to predict the performance of new wheat (Triticum aestivum) genotypes. The CGM was designed to predict phenology, nitrogen, and biomass traits. The CGM-WGP model simulated more heritable GSPs compared with the CGM and gave smaller errors for the observed phenotypes. The WGP model performed better when predicting yield, grain number, and grain protein content, but showed comparable performance to the CGM-WGP model for heading and physiological maturity dates. However, the CGM-WGP model was able to predict unobserved traits (for which there were no phenotypic records in the reference population). The CGM-WGP model also showed superior performance when predicting unrelated individuals that clustered separately from the reference population. Our results demonstrate new advantages for CGM-WGP modelling and suggest future efforts should focus on calibrating CGM-WGP models using high-throughput phenotypic measures that are cheaper and less laborious to collect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erac393 | DOI Listing |
Front Plant Sci
July 2024
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, France.
Introduction: Predicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects.
View Article and Find Full Text PDFTheor Appl Genet
April 2024
Grains Innovation Park, Agriculture Victoria, Horsham, VIC, 3400, Australia.
The integration of genomic prediction with crop growth models enabled the estimation of missing environmental variables which improved the prediction accuracy of grain yield. Since the invention of whole-genome prediction (WGP) more than two decades ago, breeding programmes have established extensive reference populations that are cultivated under diverse environmental conditions. The introduction of the CGM-WGP model, which integrates crop growth models (CGM) with WGP, has expanded the applications of WGP to the prediction of unphenotyped traits in untested environments, including future climates.
View Article and Find Full Text PDFJ Exp Bot
August 2023
Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia.
Running crop growth models (CGM) coupled with whole genome prediction (WGP) as a CGM-WGP model introduces environmental information to WGP and genomic relatedness information to the genotype-specific parameters modelled through CGMs. Previous studies have primarily used CGM-WGP to infer prediction accuracy without exploring its potential to enhance CGM and WGP. Here, we implemented a heading and maturity date wheat phenology model within a CGM-WGP framework and compared it with CGM and WGP.
View Article and Find Full Text PDFJ Exp Bot
March 2023
Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia.
Crop growth models (CGM) can predict the performance of a cultivar in untested environments by sampling genotype-specific parameters. As they cannot predict the performance of new cultivars, it has been proposed to integrate CGMs with whole genome prediction (WGP) to combine the benefits of both models. Here, we used a CGM-WGP model to predict the performance of new wheat (Triticum aestivum) genotypes.
View Article and Find Full Text PDFPlant Physiol
February 2022
Research & Development, Corteva Agriscience, Johnston, Iowa 50131, USA.
Plant physiology can offer invaluable insights to accelerate genetic gain. However, translating physiological understanding into breeding decisions has been an ongoing and complex endeavor. Here we demonstrate an approach to leverage physiology and genomics to hasten crop improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.