PINK1, as the first reported ubiquitin kinase, can phosphorylate ubiquitin (Ub) at Ser65 site, which regulates the structure and function of Ub monomer. However, the levels of PINK1 and phosphorylated Ub (pUb) are very low in normal cells. Here we show that when proteasome activity is inhibited, the levels of soluble PINK1 (sPINK1) and pUb will increase significantly. Further we show that ubiquitin phosphorylation can inhibit the formation of K48-linked ubiquitin chains in vivo and in vitro, and the retracted state of pUb plays a leading role in the inhibition process. Ubiquitination is a necessary process for substrates degradation. Thus, phosphorylation can regulate proteasomal degradation of substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BSR20220968 | DOI Listing |
Cell Rep
August 2024
Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne, VIC 3000, Australia. Electronic address:
Small ubiquitin-binding domains (UBDs) recognize small surface patches on ubiquitin with weak affinity, and it remains a conundrum how specific cellular responses may be achieved. Npl4-type zinc-finger (NZF) domains are ∼30 amino acid, compact UBDs that can provide two ubiquitin-binding interfaces, imposing linkage specificity to explain signaling outcomes. We here comprehensively characterize the linkage preference of human NZF domains.
View Article and Find Full Text PDFAutophagy
December 2024
Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
Mol Neurodegener
January 2024
MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
Autophagy
May 2024
Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
The ubiquitin kinase-ligase pair PINK1-PRKN recognizes and transiently labels damaged mitochondria with ubiquitin phosphorylated at Ser65 (p-S65-Ub) to mediate their selective degradation (mitophagy). Complete loss of PINK1 or PRKN function unequivocally leads to early-onset Parkinson disease, but it is debated whether impairments in mitophagy contribute to disease later in life. While the pathway has been extensively studied in cell culture upon acute and massive mitochondrial stress, basal levels of activation under endogenous conditions and especially in the brain remain undetermined.
View Article and Find Full Text PDFNPJ Parkinsons Dis
August 2023
Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!