A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA hypomethylation promotes learning and memory recovery in a rat model of cerebral ischemia/reperfusion injury. | LitMetric

Cerebral ischemia/reperfusion injury impairs learning and memory in patients. Studies have shown that synaptic function is involved in the formation and development of memory, and that DNA methylation plays a key role in the regulation of learning and memory. To investigate the role of DNA hypomethylation in cerebral ischemia/reperfusion injury, in this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery and then treated the rats with intraperitoneal 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation. Our results showed that 5-aza-2'-deoxycytidine markedly improved the neurological function, and cognitive, social and spatial memory abilities, and dose-dependently increased the synaptic density and the expression of SYP and SHANK2 proteins in the hippocampus in a dose-dependent manner in rats with cerebral ischemia/reperfusion injury. The effects of 5-aza-2'-deoxycytidine were closely related to its reduction of genomic DNA methylation and DNA methylation at specific sites of the Syp and Shank2 genes in rats with cerebral ischemia/reperfusion injury. These findings suggest that inhibition of DNA methylation by 5-aza-2'-deoxycytidine promotes the recovery of learning and memory impairment in a rat model of cerebral ischemia/reperfusion injury. These results provide theoretical evidence for stroke treatment using epigenetic methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700107PMC
http://dx.doi.org/10.4103/1673-5374.353494DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia/reperfusion
28
ischemia/reperfusion injury
28
dna methylation
20
learning memory
16
rat model
12
model cerebral
12
dna hypomethylation
8
cerebral
8
methylation 5-aza-2'-deoxycytidine
8
syp shank2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!