Petroleum-based polymers traditionally used for plastic packaging production have been shown to leach dangerous chemicals such as bisphenol-A (BPA). Bio-based polymers are potentially safer alternatives, and many can be sustainably sourced from waste streams in the food industry. This study assesses bio-based polymers undergoing food packaging development for migration of endocrine disrupting leachates at the level of estrogen, androgen and progestagen nuclear receptor transcriptional activity. Reporter gene assays were coupled with migration testing, performed using standardised test conditions for storage and temperature. Test samples include nine bio-based polymers and four inorganic waste additives mixed with a traditional petroleum-based polymer, polypropylene. Thermoplastic starch material, polybutylene succinate, polycaprolactone, polybutylene adipate terephthalate (PBAT), two polylactic acid (PLA)/PBAT blends, polyhydroxybutyrate (PHB) and eggshell/polypropylene (10:90) presented no significant reduction in metabolic activity or hormonal activity under any test condition. Polypropylene (PP) presented no hormonal activity. Metabolic activity was reduced in the estrogen responsive cell line after 10 days migration testing of eggshell/polypropylene (0.1:99.9) in MeOH at 40°C, and PP in MeOH and dH0. Estrogenic agonist activity was observed after 10 days in poultry litter ash/polypropylene (10:90) in MeOH at 20°C and 40°C, poultry feather based polymer in MeOH and dHO at 40°C, and eggshell/polypropylene (40:60) and PLA in dHO at 40°C. Activity was within a range of 0.26-0.50 ng 17-estradiol equivalents per ml, equating to an estrogenic potency of 3-∼2800 times less than the estrogenic leachate BPA. Poultry litter ash/polypropylene (10:90) in MeOH for 10 days presented estrogenic activity at 20°C and 40°C within the above range and anti-androgenic activity at 40°C. Progestagenic activity was not observed for any of the compounds under any test condition. Interestingly, lower concentrations of eggshell or PP may eliminate eggshell estrogenicity and PP toxicity. Alternatively eggshell may bind and eliminate the toxic elements of PP. Similarly, PLA estrogenic activity was removed in both PLA/PBAT blends. This study demonstrates the benefits of bioassay guidance in the development of safer and sustainable packaging alternatives to petroleum-based plastics. Manipulating the types of additives and their formulations alongside toxicological testing may further improve safety aspects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531239 | PMC |
http://dx.doi.org/10.3389/ftox.2022.936014 | DOI Listing |
Int J Biol Macromol
January 2025
Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand 247667, India. Electronic address:
Plant-based macromolecules such as lignocellulosic fibers are one of the promising bio-resources to be utilized as reinforcement for developing sustainable composites. However, due to their hydrophilic nature and weak interfacial bonding with polymer matrices, these fibers are mostly incompatible with biopolymers. The current research endeavor explores the novel eco-friendly oxalic acid (CHO.
View Article and Find Full Text PDFiScience
December 2024
State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy.
View Article and Find Full Text PDFBioresour Technol
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
2,5-Furandicarboxylic acid (FDCA) is a high-value chemical extensively used in the production of bio-based polymers, but bioconversion of furan derivatives like 5-hydroxymethylfurfural (HMF) into FDCA remains challenging owing to substrate cytotoxicity. Here, we engineered an Mn(II)-oxidizing Pseudomonas sp. MB04B for efficient FDCA biosynthesis from HMF.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan. Electronic address:
This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55 to 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!