Metabolomics and proteomics analyses revealed mechanistic insights on the antimicrobial activity of epigallocatechin gallate against .

Front Cell Infect Microbiol

Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.

Published: October 2022

() is a highly virulent zoonotic pathogen and causes severe economic losses to the swine industry worldwide. Public health security is also threatened by the rapidly growing antimicrobial resistance in . Therefore, there is an urgent need to develop new and safe antibacterial alternatives against . The green tea polyphenol epigallocatechin gallate (EGCG) with a number of potential health benefits is known for its antibacterial effect; however, the mechanism of its bactericidal action remains unclear. In the present, EGCG at minimal inhibitory concentration (MIC) showed significant inhibitory effects on growth, hemolytic activity, and biofilm formation, and caused damage to cells . EGCG also reduced pathogenicity in larvae . Metabolomics and proteomics analyses were performed to investigate the underlying mechanism of antibacterial activity of EGCG at MIC. Many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and cell membrane, and virulence were down-regulated after the treatment of with EGCG. EGCG not only significantly reduced the hemolytic activity of but also down-regulated the expression of suilysin (Sly). The top three shared KEGG pathways between metabolomics and proteomics analysis were ABC transporters, glycolysis/gluconeogenesis, and aminoacyl-tRNA biosynthesis. Taken together, these data suggest that EGCG could be a potential phytochemical compound for treating infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531131PMC
http://dx.doi.org/10.3389/fcimb.2022.973282DOI Listing

Publication Analysis

Top Keywords

metabolomics proteomics
12
proteomics analyses
8
epigallocatechin gallate
8
hemolytic activity
8
egcg reduced
8
egcg
7
analyses revealed
4
revealed mechanistic
4
mechanistic insights
4
insights antimicrobial
4

Similar Publications

Serum uric acid is an end-product of purine metabolism. Uric acid concentrations in excess of the physiological range may lead to diseases such as gout, cardiovascular disease, and kidney injury. The kidney includes a variety of cell types with specialized functions such as fluid and electrolyte homeostasis, detoxification, and endocrine functions.

View Article and Find Full Text PDF

Parkinson's disease is primarily marked by mitochondrial dysfunction and metabolic abnormalities. We recently reported that the combined metabolic activators improved the immunohistochemical parameters and behavioural functions in Parkinson's disease and Alzheimer's disease animal models and the cognitive functions in Alzheimer's disease patients. These metabolic activators serve as the precursors of nicotinamide adenine dinucleotide and glutathione, and they can be used to activate mitochondrial metabolism and eventually treat mitochondrial dysfunction.

View Article and Find Full Text PDF

Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).

View Article and Find Full Text PDF

The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.

View Article and Find Full Text PDF

UHPLC-TIMS-PASEF-MS for Lipidomics: From Theory to Practice.

Methods Mol Biol

January 2025

Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.

Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!