AI Article Synopsis

Article Abstract

Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as [typhoidal (TS) and non-typhoidal (nTS)], cholera, and multiple pathotypes of (). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, T, MAIT, Monocytes and DC) during . Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers Typhi and Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530043PMC
http://dx.doi.org/10.3389/fmicb.2022.983403DOI Listing

Publication Analysis

Top Keywords

enteric
9
controlled human
8
immunological correlates
8
correlates protection
8
enteric fevers
8
enteric pathogens
8
enteric infections
8
cell types
8
human infectious
4
infectious models
4

Similar Publications

Unlabelled: Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.

View Article and Find Full Text PDF

Specific and sensitive detection of bovine coronavirus using CRISPR-Cas13a combined with RT-RAA technology.

Front Vet Sci

January 2025

Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China.

Introduction: Bovine coronavirus (BCoV) is an important pathogen of enteric and respiratory disease in cattle, resulting in huge economic losses to the beef and dairy industries worldwide. A specific and sensitive detection assay for BCoV is critical to the early-stage disease prevention and control.

Methods: We established a specific, sensitive, and stable assay for BCoV nucleic acid detection based on CRISPR/Cas13a combined with reverse transcription recombinase-aided amplification (RT-RAA) technology.

View Article and Find Full Text PDF

colonization and undernutrition in infants in rural eastern Ethiopia - a longitudinal community-based birth cohort study.

Front Public Health

January 2025

Department of Animal Sciences, Global Food Systems Institute, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.

Background: is associated with environmental enteric dysfunction (EED) and malnutrition in children. infection could be a linchpin between livestock fecal exposure and health outcomes in low-resource smallholder settings.

Methods: We followed a birth cohort of 106 infants in rural smallholder households in eastern Ethiopia up to 13 months of age.

View Article and Find Full Text PDF

Sargassum Nanocellulose-Based Fully Ingestible Supercapacitor.

Adv Mater

January 2025

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

Small high-performance energy modules have significant practical value in the biomedical field, such as painless diagnosis, alleviation of gastrointestinal discomfort, and electrical stimulation therapy. However, due to performance limitations and safety concerns, it is a formidable challenge to design a small, emerging ingestible power supply. Here, a fully ingestible supercapacitor (FISC) constructed of sargassum cellulose nanofiber is presented.

View Article and Find Full Text PDF

Background: Inflammatory bowel disease (IBD) is a chronic condition influenced by diet, which affects gut microbiota and immune functions. The rising prevalence of IBD, linked to Western diets in developing countries, highlights the need for dietary interventions. This study aimed to assess the impact of white kidney beans (WKB) on gut inflammation and microbiota changes, focusing on their effects on enteric glial cells (EGCs) and immune activity in colitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!