Background: Purified diets (PDs) contain refined ingredients with one main nutrient, allowing for greater control relative to grain-based diets (GBDs), which contain unrefined grains and animal byproducts. Traditional PDs like the American Institute of Nutrition (AIN)-76A (76A) and AIN-93G (93G) can negatively impact metabolic and gut health when fed long term, in part due to lower total fiber, no soluble fiber, and higher sucrose content.
Objective: Two studies were conducted to determine how PDs with reduced sucrose and increased fiber (soluble and insoluble) influence metabolic and gut health in mice compared with traditional AIN PDs or GBDs.
Methods: In study 1, C57Bl/6N mice ( = 75) consumed a GBD [LabDiet 5002 (5002)], 76A, 93G, or 2 PDs with reduced sucrose and higher fiber for 88 d. Body composition and metabolic parameters were assessed. In study 2, C57Bl/6N mice ( = 54) consumed either 2 GBDs (LabDiet 5001 or 5002) or PDs with different types/levels of fiber for 14 d. Microbiome alterations and predicted functional metagenomic changes were measured.
Results: The PD with 75 g cellulose and 25 g inulin per 4084 kcals marginally influenced body weight and adiposity, but improved glucose tolerance relative to 93G ( = 0.0131) and 76A ( = 0.0014). Cecal and colonic weights were lower in mice fed cellulose-based PDs compared with those fed GBDs and soluble-fiber PDs. Soluble-fiber PDs reduced alpha diversity and showed similar beta diversity, which differed from cellulose-based PDs and GBDs. Certain genera associated with improved gut health such as and were significantly elevated by soluble-fiber PDs ( ≤ 0.01). Metabolic pathways related to carbohydrate and fatty acid metabolism were affected by PDs.
Conclusions: PDs formulated with lower sucrose and increased fiber content, particularly soluble fiber, blunted elevations in metabolic parameters and favorably impacted the microbiota and metagenome in C57BL/6N mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529224 | PMC |
http://dx.doi.org/10.1093/cdn/nzac105 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, PR China. Electronic address:
The insolubility of eggshell membrane (ESM) limits it application. This study utilized a green process subcritical water (SW), to prepare soluble ESM and compared it with acid hydrolysis. The effect of SW temperature on the yields of total protein, free amino acids, and glycosaminoglycan in the hydrolysate was investigated.
View Article and Find Full Text PDFACS Sustain Chem Eng
January 2025
Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, Chr. Magnus Falsens vei 18, Ås 1433, Norway.
Cellulose-derived biomaterials offer a sustainable and versatile platform for various applications. Enzymatic engineering of these fibers, particularly using lytic polysaccharide monooxygenases (LPMOs), shows promise due to the ability to introduce functional groups onto cellulose surfaces, potentially enabling further functionalization. However, harnessing LPMOs for fiber engineering remains challenging, partly because controlling the enzymatic reaction is difficult and partly because limited information is available about how LPMOs modify the fibers.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Solar System Exploration Division, NASA Goddard Space Center, Greenbelt, Maryland, USA.
Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.
Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.
Geroscience
January 2025
Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
Flaxseed, a rich source of omega-3 polyunsaturated fatty acid alpha-linolenic acid (ALA), lignans, and soluble fiber, has attracted attention for its potential to improve multiple cardiometabolic risk factors. While its benefits are well-recognized, comprehensive evaluations of its direct impact on clinical outcomes, such as the prevention or progression of cardiometabolic diseases, remain limited. Additionally, its potential to support healthy aging and longevity through fundamental biological mechanisms has not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!