Breast cancer is the leading cause of death in female cancers, and what's worse, tamoxifen resistance occurs in almost 30% breast cancer patients and has seriously attenuated the therapeutic effect. It is widely studied that epigenetic regulation has played important role in the development of tamoxifen resistance. FOXA1 is a pioneer transcription factor that can translate epigenetic signature into transcription regulation and also drive genome-wide enhancer reprogramming in breast cancer. However, the chromatin super enhancer landscape orchestrated by FOXA1 and the key downstream targets of the FOXA1 oncogenic network in tamoxifen resistance remain elusive. Through analyzing the FOXA1 ChIP-seq data in tamoxifen sensitive MCF7 and tamoxifen resistant MCF7/TamR cells, we show that the FOXA1 chromatin occupancy is enhanced in both the promoter and enhancer regions, and the recruitment events may be E2 dependent in both MCF7 and MCF7/TamR cells. By integratively analyzing the FOXA1 ChIP-seq data and RNA-seq data of MCF7 and MCF7/TamR cells, we find that the enhanced or reduced FOXA1 chromatin binding densities may synchronize the transcriptional activity in tamoxifen resistance. Besides, we identify 1003 super enhancer associated protein coding genes and five super enhancer associated lncRNAs (ATP1A1-AS1, CASC11, CASC15, KCTD21-AS1, LINC00885) in tamoxifen resistance. By KM survival analysis, we find that high expression level of ATP1A1-AS1 and its sense transcript ATP1A1 indicates favorable clinical outcome among the luminal endocrine treated breast cancer patients. Further coexpression analysis indicates that ATP1A1-AS1 is significantly correlated with ATP1A1, and RT-qPCR results show that they both are downregulated in MCF7/TamR cells. Our study shows that the FOXA1 transcriptional regulatory network may promote the development of tamoxifen resistance, and identifies one super enhancer associated lncRNA ATP1A1-AS1 that may work as promising biomarker or drug target in tamoxifen resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530462 | PMC |
http://dx.doi.org/10.3389/fgene.2022.992444 | DOI Listing |
Breast Cancer Res
January 2025
College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.
Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.
Int J Mol Sci
December 2024
Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland.
Ovarian cancer is one of the most prevalent cancers among women. Due to the frequent problems during treatment, such as relapses or the development of resistance to treatment, new methods of treating this disease are being sought. A special attention is directed towards the combination therapies combining several different anticancer agents.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA.
Purpose: The development of endocrine resistance remains a significant challenge in the clinical management of estrogen receptor-positive () breast cancer. Metabolic reprogramming is a prominent component of endocrine resistance and a potential therapeutic intervention point. However, a limited understanding of which metabolic changes are conserved across the heterogeneous landscape of ER+ breast cancer or how metabolic changes factor into ER DNA binding patterns hinder our ability to target metabolic adaptation as a treatment strategy.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Breast cancer (BC) commonly expresses estrogen receptors (ERs); hence, endocrine therapy targeting ERs is considered an effective treatment. Tamoxifen (TAM) resistance is an essential clinical complication leading to cancer progression and metastasis. This study investigated MicroRNAs (miRNAs) potentially implicated in drug resistance (miR-182-3p, miR-382-3p) or sensitivity (miR-93, miR- 142- 3p).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea.
Patients with estrogen receptor-positive breast cancer undergoing continuous adjuvant hormone therapy often experience delayed recurrence with tamoxifen use, potentially causing adverse effects. However, the lack of biomarkers hampers patient selection for extended endocrine therapy. This study aimed to elucidate the molecular mechanisms underlying delayed recurrence and identify biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!