Visible-light photocatalysis has advanced as a versatile tool in organic synthesis. However, attaining precise stereocontrol in photocatalytic reactions has been a longstanding challenge due to undesired photochemical background reactions and the involvement of highly reactive radicals or radical ion intermediates generated under photocatalytic conditions. To address this problem and expand the synthetic utility of photocatalytic reactions, a number of innovative strategies, including mono- and dual-catalytic approaches, have recently emerged. Of these, exploiting chiral organocatalysis, such as enamine catalysis, iminium-ion catalysis, Brønsted acid/base catalysis, and -heterocyclic carbene catalysis, to induce chirality transfer of photocatalytic reactions has been widely explored. This Review aims to provide a current, comprehensive overview of asymmetric photocatalytic reactions enabled by chiral organocatalysts published through June 2021. The substrate scope, advantages, limitations, and proposed reaction mechanisms of each reaction are discussed. This review should serve as a reference for the development of visible-light-induced asymmetric photocatalysis and promote the improvement of the chemical reactivity and stereoselectivity of these reactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531867 | PMC |
http://dx.doi.org/10.1002/cctc.202101292 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:
Construction of the photocatalysts with synergistic active sites holds great significance in enhancing the direct CO reduction coupled with HO oxidation under solar irradiation. This work demonstrates the fabrication of a dual-active-site catalyst (Ni-NiO/TiO) through in-situ formation and simultaneous modulation of Ni single atoms (Ni) and NiO clusters on porous TiO. Both Ni and NiO are characterized by X-ray absorption fine structure (XAFS) analyses and diffuse reflectance infrared Fourier transform spectroscopy using CO as a probe molecule (CO-DRIFTS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
In single-atomic photocatalyst systems, the spatial distribution of single atoms on heterojunctions and its impact on photocatalytic processes, particularly on carrier dynamics and the CO reduction process involving multielectron reactions, remains underexplored. To address this gap, a WO/TiO nanotube heterojunction with a spatially selective distribution of Au single atoms was developed using an oxygen vacancy anchoring strategy for CO photoreduction. By anchoring Au atoms onto the WO or TiO components, a substantial number of active sites are generated and the electron transfer pathways from the heterojunction toward Au sites are formed, thereby enhancing carrier separation and concentration.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China.
Hydrogen peroxide (HO) is an important chemical in synthetic chemistry with huge demands. Photocatalytic synthesis of HO via oxygen reduction and water oxidation reactions (ORR and WOR) is considered as a promising and desirable solution for on-site applications. However, the efficiency of such a process is low due to the poor solubility of molecular oxygen and the rapid reverse reaction of hydroxyl radicals (OH) with hydrogen atoms (H).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
CrO/g-CN photocatalyst was successfully synthesized via the one-pot thermal polycondensation method by mixing different ratios of CrCl.HO and thiourea. Thiourea was used as the precursor for building g-CN.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China. Electronic address:
The high concentration of metal compounds found in red mud (RM) can serve as cost-effective raw materials for photo Fenton catalysts in the treatment of organic dye wastewater. In this study, RM was modified with bagasse using a hydrothermal method to prepare a photo-Fenton catalyst. The degradation efficiency of Rhodamine (RhB) solution under different conditions was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!