Influence of denaturants on amyloid β42 aggregation kinetics.

Front Neurosci

Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.

Published: September 2022

Amyloid formation is linked to devastating neurodegenerative diseases, motivating detailed studies of the mechanisms of amyloid formation. For Aβ, the peptide associated with Alzheimer's disease, the mechanism and rate of aggregation have been established for a range of variants and conditions and in bodily fluids. A key outstanding question is how the relative stabilities of monomers, fibrils and intermediates affect each step in the fibril formation process. By monitoring the kinetics of aggregation of Aβ42, in the presence of urea or guanidinium hydrochloride (GuHCl), we here determine the rates of the underlying microscopic steps and establish the importance of changes in relative stability induced by the presence of denaturant for each individual step. Denaturants shift the equilibrium towards the unfolded state of each species. We find that a non-ionic denaturant, urea, reduces the overall aggregation rate, and that the effect on nucleation is stronger than the effect on elongation. Urea reduces the rate of secondary nucleation by decreasing the coverage of fibril surfaces and the rate of nucleus formation. It also reduces the rate of primary nucleation, increasing its reaction order. The ionic denaturant, GuHCl, accelerates the aggregation at low denaturant concentrations and decelerates the aggregation at high denaturant concentrations. Below approximately 0.25 M GuHCl, the screening of repulsive electrostatic interactions between peptides by the charged denaturant dominates, leading to an increased aggregation rate. At higher GuHCl concentrations, the electrostatic repulsion is completely screened, and the denaturing effect dominates. The results illustrate how the differential effects of denaturants on stability of monomer, oligomer and fibril translate to differential effects on microscopic steps, with the rate of nucleation being most strongly reduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531139PMC
http://dx.doi.org/10.3389/fnins.2022.943355DOI Listing

Publication Analysis

Top Keywords

amyloid formation
8
microscopic steps
8
urea reduces
8
aggregation rate
8
rate nucleation
8
reduces rate
8
denaturant concentrations
8
differential effects
8
aggregation
7
rate
7

Similar Publications

Objective: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is safe and potentially beneficial in patients with Alzheimer's disease (AD) for the removal of amyloid-beta (Aβ) plaques. However, the optimal BBB opening intervals and number of treatment sessions for clinical improvement remain undefined. Therefore, the aim of this study was to evaluate the safety and benefits of repeated and more extensive BBB opening alone.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by various pathological features including amyloid-β deposition and tau hyperphosphorylation, with cerebral microvascular dysfunction likely playing a role in its progression.
  • Researchers investigated the microvascular responses and potassium channel activity in an AD mouse model induced by streptozotocin (STZ), using behavioral tests and cellular assays.
  • The study found that STZ-AD mice showed poorer performance on behavioral tests and had impaired microvascular responses, which were further deteriorated by exposure to soluble Aβ, indicating a potential link between microvascular dysfunction and AD pathology.
View Article and Find Full Text PDF

Insulin signaling and oxidative stress: Bridging the gap between type 2 diabetes mellitus and Alzheimer's disease.

J Alzheimers Dis

January 2025

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.

Background: Type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) are two prevalent chronic diseases that pose significant global health challenges. Increasing evidence suggests a complex bidirectional relationship between these conditions, where T2D elevates the risk of AD, and AD exacerbates glucose metabolism abnormalities in T2D.

Objective: This review explores the molecular mechanisms linking T2D and AD, focusing on the role of insulin signaling pathways and oxidative stress.

View Article and Find Full Text PDF

Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways.

Proteomics

January 2025

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.

Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!