Interleukin 12 (IL-12) is a naturally occurring cytokine that plays a key role in inducing antitumor immune responses, including induction of antitumor immune memory. Currently, no IL-12-based therapeutic products have been approved for clinical application because of its toxicities. On the basis of this review of clinical trials using primarily wild-type IL-12 and different delivery methods, we conclude that the safe utilization of IL-12 is highly dependent on the tumor-specific localization of IL-12 post administration. In this regard, we have developed a cell membrane-anchored and tumor-targeted IL-12-T (attIL12-T) cell product for avoiding toxicity from both IL-12 and T cells-induced cytokine release syndrome in peripheral tissues. A phase I trial using this product which seeks to avoid systemic toxicity and boost antitumor efficacy is on the horizon. Of note, this product also boosts the impact of CAR-T or TCR-T cell efficacy against solid tumors, providing an alternative approach to utilize CAR-T to overcome tumor resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530253PMC
http://dx.doi.org/10.3389/fimmu.2022.952231DOI Listing

Publication Analysis

Top Keywords

antitumor immune
8
il-12
5
il12 immune
4
immune therapy
4
therapy clinical
4
clinical trial
4
trial review
4
review novel
4
novel strategies
4
strategies avoiding
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.

View Article and Find Full Text PDF

Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.

View Article and Find Full Text PDF

Curative immunotherapy-based strategies for non-metastatic non-small cell lung cancer.

Explor Target Antitumor Ther

December 2024

Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, US.

The emergence of immunotherapy has ushered in a new era in the management of non-small cell lung cancer (NSCLC). Various immune check point inhibitors have demonstrated significant benefit in the management of locally advanced NSCLC that are treated with either surgery or concurrent chemoradiation. We provide a comprehensive and up-to-date review of data from key studies, discuss the challenging clinical issue regarding the timing and duration of immunotherapy in patients undergoing surgery, and highlight the unmet needs and future directions of immunotherapy in NSCLC.

View Article and Find Full Text PDF

Aim: Immune checkpoint inhibitors improved the survival of advanced non-small cell lung cancer. However, only 20% of patients respond to these treatments and the search for predictive biomarkers of response is still topical. The objective of this work is to analyze the anti-PD-1 monotherapy benefit based on genetic alterations diagnosed by next generation sequencing (NGS), in advanced non-small cell lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!