Over the past decade, SnO has been considered a promising p-type oxide semiconductor. However, achieving high mobility in the fabrication of p-type SnO films is still highly dependent on the post-annealing procedure, which is often used to make SnO, due to its metastable nature, readily convertible to SnO and/or intermediate phases. This paper demonstrates a fully room-temperature fabrication of p-type SnO thin films using ion-beam-assisted deposition. This technique offers independent control between ion density, via the ion-gun anode current and oxygen flow rate, and ion energy, via the ion-gun anode voltage, thus being able to optimize the optical band gap and the hole mobility of the SnO films to reach 2.70 eV and 7.89 cm V s, respectively, without the need for annealing. Remarkably, this is the highest mobility reported for p-type SnO films whose fabrication was carried out entirely at room temperature. Using first-principles calculations, we rationalize that the high mobility is associated with the fine-tuning of the Sn-rich-related defects and lattice densification, obtained by controlling the density and energy of the oxygen ions, both of which optimize the spatial overlap of the valence bands to form a continuous conduction path for the holes. Moreover, due to the absence of the annealing process, the Raman spectra reveal no significant signatures of microcrystal formation in the films. This behavior contrasts with the case involving the air-annealing procedure, where a complex interaction occurs between the formation of SnO microcrystals and the formation of SnO intermediate phases. This interplay results in variations in grain texture within the film, leading to a lower optimum Hall mobility of only 5.17 cm V s. Finally, we demonstrate the rectification characteristics of all-fabricated-at-room-temperature SnO-based p-n devices to confirm the viability of the p-type SnO films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c12617 | DOI Listing |
ACS Omega
December 2024
UCL Institute for Materials Discovery, University College London, Malet Place, London WC1E 7JE, United Kingdom.
Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs.
View Article and Find Full Text PDFNano Lett
December 2024
School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
The lack of low temperature processable, high-performance p-type oxide thin-film transistors (TFTs) limits their implementation in monolithically integrated back-end-of-line (BEOL) CMOS circuitries. In this work, we demonstrate a reactive magnetron-sputtered SnO TFT with unprecedented hole field-effect mobility (μ) of 38.7 cm/V·s, as well as an on/off current ratio () of 2.
View Article and Find Full Text PDFSmall
January 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China.
In n-i-p type perovskite solar cells (PSCs), mismatches in energy level and lattice at the buried interface is highly detrimental to device performance. Here, thin PbS interconnect layer in situ coating on the SnO surface is grown. The function of PbS at the interface is different from the commonly used function of crystalline seeds in perovskite bulk.
View Article and Find Full Text PDFAdv Mater
October 2024
School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China.
The p- or n-type property of semiconductor materials directly determine the final performance of photoelectronic devices. Generally, perovskite deposited on p-type substrate tends to be p-type, while perovskite deposited on n-type substrate tends to be n-type. Motived by this, a substrate-induced re-growth strategy is reported to induce p- to n-transition of perovskite surface in inverted perovskite solar cells (PSCs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
Maintaining the power conversion efficiency (PCE) of flexible perovskite solar cells (fPSCs) while decreasing their weight is essential to utilize their lightweight and flexibility as much as possible for commercialization. Strengthening the interfaces between functional layers, such as flexible substrates, charge transport layers, and perovskite active layers, is critical to addressing the issue. Herein, we propose a feasible and one-stone-for-two-birds method to improve the electron transport layer (ETL), SnO, and the interface between the ETL and perovskite layer simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!