A thermodynamic framework to identify apposite refrigerant former for hydrate-based applications.

Sci Rep

Energy and Process Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

Published: October 2022

High latent heat storage capacity with naturally assisted salt rejection makes the clathrate compounds appropriate for applications towards load management and desalination processes. Adding to these energy savings are the ease of operations provided by water and the mild conditions at which the refrigerant hydrates are occurred. A direct comparison between these hydrates becomes unfeasible due to the scattered experimental data. Though thermodynamics can streamline this dispersed data, they are currently limited to being a proof of concept most accurately representing the experimental observations. We address this critical deficit of phase assessment and identify, from among R13, R14, R22, R23, R125, R134a and R152a, the most suitable hydrate former for the concerned application. An approach based on van der Waals and Platteeuw model is undertaken and the estimates are quantified in terms of percent average absolute relative deviations (% AARD). An average AARD of 1.75% and 2.68% is observed in pure and aqueous electrolytic phase of NaCl, KCl, CaCl and MgCl, respectively. The model predictions are then estimated at temperature/salinity of 281 K/0 wt% and 284 K/3.5 wt%. Together with the qualitative assessment of the hydrate phase, viz, vapor pressure, compressibility and dissociation enthalpy, R152a refrigerant is observed to be the appropriate former for applications to both load management and desalination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537194PMC
http://dx.doi.org/10.1038/s41598-022-19557-yDOI Listing

Publication Analysis

Top Keywords

appropriate applications
8
applications load
8
load management
8
management desalination
8
thermodynamic framework
4
framework identify
4
identify apposite
4
apposite refrigerant
4
refrigerant hydrate-based
4
hydrate-based applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!