Objectives: To investigate the depth of cure (DoC), fracture toughness (K) and wear of ion releasing resin-based composite (RBC) restorative materials.
Methods: Two ion releasing RBCs, Activa (ACT) and Cention-N (CN) were compared to a conventional RBC (Z350) and a resin-modified glass ionomer cement (Fuji-II-LC). The DoC was measured in a 10-mm deep semi-circular metal mold with a 2-mm internal radius (n = 8). The molds were irradiated from one end for 20-s. The Knoop hardness (KH) was measured at 0.5-mm intervals from the surface after the specimens had been stored at 37 °C for 24-h. To measure the K, single-edge-notched specimens (n = 15/group) were prepared (25×5x2.5-mm) for a 3-point bending test and then stored for either 1 or 30-days in water at 37 °C. Disk-shaped specimens (n = 10) were subjected to 250,000-load cycles of 49-N using a chewing simulator against spherical steatite antagonists. DoC and wear data were analyzed by one-way ANOVA and Tukey post hoc tests (p ≤ 0.05). K data were analyzed by two-way ANOVA and one-way ANOVA, and the Tukey post hoc test (p ≤ 0.05). In addition, an independent t-test was used to determine if storage time had any effect (α = 0.05) on the K of each material.
Results: Maximum hardness value was the highest for Z350 and the lowest for ACT. The depth at which 80% of the maximum KH, was the highest for CN (9.2 mm) and the lowest for Z350 (2 mm). All tested materials met the manufacturers' claims for DoC. After 1-day, the highest K values were recorded for ACT and the lowest for Fuji-II-LC. Water storage (30-days) significantly reduced the K value for all materials except Fuji-II-LC. The highest wear rate values were recorded for CN followed by ACT.
Significance: All tested materials met their manufacturers' claims for DoC. Water storage for 30-days significantly reduced the fracture toughness for ACT and CN. Wear was significantly higher for ACT and CN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2022.09.007 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
ISTerre, University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, University Gustave Eiffel, 38058 Grenoble, France.
In this study, the removal of benzotriazole (BTA), a pervasive aquatic contaminant widely used for its anti-corrosion, UV-stabilizing, and antioxidant properties, by nanomagnetite, biochar, and nanomagnetite-biochar composite is investigated. Nanomagnetite and nanomagnetite-biochar composite were synthesized under anoxic conditions and tested for BTA removal efficiency at neutral pH under both oxic and anoxic conditions at different time scales. Within the short time scale (up to 8 h), the removal of BTA by nanomagnetite-biochar composite was shown to be due to BTA deprotonation by the nanomagnetite surface.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy.
Magnesium alloys are promising biomaterials to be used as temporary implants due to their biocompatibility and biodegradability. The main limitation in the use of these alloys is their rapid biodegradation. Moreover, the risk of microbial infections, often following the implant surgery and hard to eradicate, is another challenge.
View Article and Find Full Text PDFGels
January 2025
Department of Dairy Science, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia.
Encapsulation in alginate hydrogel microspheres is an effective method for protecting and improving the survival of lactic acid bacteria in different environments. This research aims to expand the knowledge about the structure/property relationship of calcium alginate microspheres loaded with a mixture of autochthonous probiotic bacteria ( and ). A novel hydrogel formulation (FORMLAB) was prepared by ionic gelation and the molecular interactions between the FORMLAB constituents, surface morphology, structure, swelling degree, and release profile were characterized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Caen Normandie, ENSICAEN, CNRS, LCS, 14000 Caen, France.
Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!