A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence for Image Registration in Radiation Oncology. | LitMetric

Artificial Intelligence for Image Registration in Radiation Oncology.

Semin Radiat Oncol

Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. Electronic address:

Published: October 2022

Automatic image registration plays an important role in many aspects of the radiation oncology workflow ranging from treatment simulation, image guided and adaptive radiotherapy, motion management and response evaluation. Traditional automatic registration algorithms are often time-consuming and further improvements in registration accuracy are required. Recently, a variety of AI-driven strategies for automatic image registrations have been developed. In this review an overview of the many applications of automatic image registration in radiation oncology is provided. Different learning strategies and network architectures have been reviewed and the current status of AI based automatic image registration algorithms in radiation oncology has been described. AI based strategies for automatic image registration typically do not outperform traditional strategies yet. Various promising approaches to further improve AI based image registrations are being explored. Therefore AI based automatic image registration may be the method of choice in the foreseeable future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semradonc.2022.06.003DOI Listing

Publication Analysis

Top Keywords

image registration
24
automatic image
24
radiation oncology
16
image
9
registration
8
registration radiation
8
registration algorithms
8
strategies automatic
8
image registrations
8
based automatic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!