Uncertainty Assessment for Deep Learning Radiotherapy Applications.

Semin Radiat Oncol

Department of Radiology, University Medical Center Utrecht, Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, Utrecht, The Netherlands.

Published: October 2022

In the last 5 years, deep learning applications for radiotherapy have undergone great development. An advantage of radiotherapy over radiological applications is that data in radiotherapy are well structured, standardized, and annotated. Furthermore, there is much to be gained in automating the current laborious workflows in radiotherapy. After the initial peak in the belief in deep learning, researchers have also identified fundamental weaknesses of deep learning. The basic assumption in deep learning is that the training and test data originate from the same data generating process. This is not always clear-cut in clinical practice, eg, data acquired with 2 different scanners of different vendors might not originate from the same data generating process. Furthermore, it is important to realize residual uncertainties remain even if test data arise from the same data generating process as the training data. As deep learning applications are being introduced in clinical radiotherapy workflows, a deep learning model must express to a user when a prediction exceeds a certain uncertainty threshold. The literature on uncertainty assessment for deep learning applications in radiotherapy is still in its infancy; however, quite a body of literature exists on the validity and uncertainty of deep learning models for computer vision applications. This paper tries to explain these general concepts to the radiotherapy community. Concepts of epistemic and aleatoric uncertainties and techniques to model them in deep learning are described in detail. It is discussed how they can be applied to maximize confidence in automated deep learning-driven workflows. Their usage is demonstrated in 3 examples from radiotherapy literature on deep learning applications, ie, dose prediction, synthetic CT generation, and contouring. In the final part, some of the key elements to ensure confidence and automatic alerting that are still missing are discussed. State-of-the-art automatic solutions for checking within-distribution vs out-of-distribution test samples are discussed. However, these methodologies are still immature, and strict QA protocols and close human supervision will still be needed. Nevertheless, deep learning models offer already much value for radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semradonc.2022.06.001DOI Listing

Publication Analysis

Top Keywords

deep learning
48
learning applications
16
deep
13
learning
12
data generating
12
generating process
12
radiotherapy
10
uncertainty assessment
8
assessment deep
8
applications radiotherapy
8

Similar Publications

A real-time approach for surgical activity recognition and prediction based on transformer models in robot-assisted surgery.

Int J Comput Assist Radiol Surg

January 2025

Advanced Medical Devices Laboratory, Kyushu University, Nishi-ku, Fukuoka, 819-0382, Japan.

Purpose: This paper presents a deep learning approach to recognize and predict surgical activity in robot-assisted minimally invasive surgery (RAMIS). Our primary objective is to deploy the developed model for implementing a real-time surgical risk monitoring system within the realm of RAMIS.

Methods: We propose a modified Transformer model with the architecture comprising no positional encoding, 5 fully connected layers, 1 encoder, and 3 decoders.

View Article and Find Full Text PDF

Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.

Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

BMC Bioinformatics

January 2025

College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.

View Article and Find Full Text PDF

Biomedical research increasingly relies on three-dimensional (3D) cell culture models and artificial-intelligence-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!