Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sulfate-reducing bacteria (SRB) have impacted the biocorrosion process for various industrial sectors, especially in the oil and gas industry. The higher stability over extreme conditions is the key parameter for their survival in such environments. So far, many materials have been tried to minimize or control the growth of SRB. In the present study, an organo-metallic compound of the zinc sorbate (ZS) was successfully synthesized by the simple co-precipitation method and its improved antibacterial activity against SRB. The SRB consortia are enriched from the sub-surface soil sample and identified by 16s rDNA sequencing by targeting the V3-V4 region. The most dominating genera identified with sulfate-reducing capability are Sulfurospirillum (42 %), Shewanella (19 %) Bacteroides (14 %), and Desulfovibrio (8 %). Further biocorrosion experiments are conducted by weight loss methods. Higher corrosion current density (I) and less charge transfer resistance (R) are observed for the SRB consortia. Concurrently, higher R is kept for the inhibitor-included systems. The slowest release of the sorbate into the medium suppressed the growth of the SRB bacterial cells with 86 ± 3 % corrosion inhibition efficiency and prevented further corrosion reactions by forming a protective layer over the surface of the carbon steel API 5LX. The surface analysis strongly confirmed that SRB caused pitting corrosion, which has been suppressed in the inhibitor-included systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!