Background: Morse taper junction tribocorrosion is recognized as an important failure mode in total hip arthroplasty. Although taper junctions are used in almost all shoulder arthroplasty systems currently available in the United States, with large variation in design, limited literature has described comparable analyses of taper damage in these implants. In this study, taper junction damage in retrieved reverse total shoulder arthroplasty (RTSA) implants was assessed and analyzed.
Methods: Fifty-seven retrieved RTSAs with paired baseplate and glenosphere components with Morse taper junctions were identified via database query; 19 of these also included paired humeral stems and trays or spacers with taper junctions. Components were graded for standard damage modes and for fretting and corrosion with a modified Goldberg-Cusick classification system. Medical records and preoperative radiographs were reviewed. Comparative analyses were performed assessing the impact of various implant, radiographic, and patient factors on taper damage.
Results: Standard damage modes were commonly found at the evaluated trunnion junctions, with scratching and edge deformation damage on 76% and 46% of all components, respectively. Fretting and corrosion damage was also common, observed on 86% and 72% of baseplates, respectively, and 23% and 40% of glenospheres, respectively. Baseplates showed greater moderate to severe (grade ≥ 3) fretting (43%) and corrosion (27%) damage than matched glenospheres (fretting, 9%; corrosion, 13%). Humeral stems showed moderate to severe fretting and corrosion on 28% and 30% of implants, respectively; matched humeral trays or spacers showed both less fretting (14%) and less corrosion (17%). On subgroup analysis, large-tapered implants had significantly lower summed fretting and corrosion grades than small-tapered implants (P < .001 for both) on glenospheres; paired baseplate corrosion grades were also significantly lower (P = .031) on large-tapered implants. Factorial analysis showed that bolt reinforcement of the taper junction was also associated with less fretting and corrosion damage on both baseplates and glenospheres. Summed fretting and corrosion grades on glenospheres with trunnions (male) were significantly greater than on glenospheres with bores (female) (P < .001 for both).
Conclusions: Damage to the taper junction is commonly found in retrieved RTSAs and can occur after only months of being implanted. In this study, tribocorrosion predominantly occurred on the taper surface of the baseplate (vs. glenosphere) and on the humeral stem (vs. tray or spacer), which may relate to the flexural rigidity difference between the titanium and cobalt-chrome components. Bolt reinforcement and the use of large-diameter trunnions led to less tribocorrosion of the taper junction. The findings of this study provide evidence for the improved design of RTSA prostheses to decrease tribocorrosion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jse.2022.08.018 | DOI Listing |
Acta Biomater
November 2024
Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany. Electronic address:
Modular hip implants are a clinically successful and widely used treatment for patients with arthritis. Despite ongoing retrieval studies the understanding of the fundamental physico-chemical mechanisms of friction and wear within the head-taper interface is still limited. Here, we Raman-spectroscopically analyze structural features of the biotribological material which is formed within the taper joint between Ti6Al4V and low-carbon cobalt alloy or high-nitrogen steel surfaces in in vitro gross-slip fretting corrosion tests with bovine calf serum.
View Article and Find Full Text PDFDent Mater
November 2024
Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA; Department of Biomedical Sciences, University of Illinois-School of Medicine at Rockford, Rockford, IL, USA. Electronic address:
Objective: Implant treatment is provided to individuals with normal, idealized masticatory forces and also to patients with parafunctional habits such as grinding, clenching, and bruxing. Dental erosion is a common increasing condition and is reported to affect 32 % of adults, increasing with age. This oral environment is conducive to tribocorrosion and the potential loss of materials from the implant surfaces and interfaces with prosthetic components.
View Article and Find Full Text PDFActa Biomater
September 2024
Clemson - Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Bioengineering Building, 101D, MSC 501, 68 Presidents St, BE 325, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:
Crevice corrosion in modular taper junctions of hip or knee replacements using cobalt-chrome-molybdenum (CoCrMo) alloys remains a clinical concern. Non-mechanically-driven corrosion has been less explored compared to mechanically assisted crevice corrosion. This study hypothesized that solution chemistry within crevices, inflammation, and cathodic electrode potential shifts during fretting result in low pH and generate reactive oxygen species (ROS), affecting oxide film behavior.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China.
The nickel-based alloy Inconel 600, strengthened by solution treatment, finds extensive application as a heat exchange pipe material in steam generators within nuclear power plants, owing to its exceptional resistance to high-temperature corrosion. However, fretting corrosion occurs at the contact points between the pipe and support frame due to gas-liquid flow, leading to wear damage. This study investigates the fretting wear behavior and damage mechanism of the nickel-based alloy Inconel 600 and 304 stainless steel friction pairs under point contact conditions in a water environment.
View Article and Find Full Text PDFJ Arthroplasty
September 2024
Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, New York.
Background: Modular metaphyseal engaging (MME) femoral components in total hip arthroplasty (THA) allow optimized femoral length, offset, and anteversion and are useful in patients with unusual proximal femoral anatomy. Fretting, corrosion, and stem fractures above the modular sleeve are complications associated with these implants. The purpose of this study was to identify failure mechanisms of retrieved MME femoral components at our institution, identify all broken stem cases, and evaluate how often an extended trochanteric osteotomy (ETO) was required for removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!