CircNf1-mediated CXCL12 expression in the spinal cord contributes to morphine analgesic tolerance.

Brain Behav Immun

Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. Electronic address:

Published: January 2023

Background: Severe pain in patients can be alleviated by morphine treatment. However, long-term morphine treatment induces analgesic tolerance and the molecular mechanism of morphine analgesic intolerance is still not fully elucidated. Therefore, a novel target for improving morphine analgesic tolerance is required. Whole-genome sequencing showed that circNf1 is highly expressed in the dorsal horns of morphine-treated rats. Circular RNAs (circRNAs) are known to be unique and conserved cellular molecules that are mostly present in cytoplasm and participate in various biochemical processes with different functions. Therefore, we focused on exploring the molecular mechanism by which circNf1 contributes to morphine analgesic tolerance.

Methods: CircRNA sequencing revealed differential expression of circRNAs after morphine treatment, and bioinformatics software programs (miRNAda, PicTar, and RNAhybrid) were used to predict possible mRNAs and binding sites. RNA binding protein immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), fluorescence in situ hybridization (FISH), western blotting, biotin-coupled probe pull-down assay, luciferase assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to detect and measure the expression levels of circRNAs, mRNAs, and proteins. Intrathecal injections of small interfering RNAs (siRNAs), microRNA (miRNA) agomirs, and functional virus microinjections were administered to artificially mediate the expression of molecules. Tail immersion and hotplate tests were performed to evaluate morphine analgesic tolerance.

Results: Morphine-induced circNf1 expression was high in the spinal cord. RIP-PCR and luciferase assay data showed that circNf1 could combine with both miR-330-3p and miR-665, and FISH showed that circNf1 co-localized with miR-330-3p and miR-665. qRT-PCR assay showed downregulation of miR-330-3p and miR-665 in morphine-treated rats; western blotting results showed that CXCL12 increased after morphine treatment, however, the upregulation of CXCL12 could be alleviated after the intrathecal injection of miR-330-3p as well as miR-665 agomir. qRT-PCR indicated that circNf1 can bind to CXCL12 promoter, the increased circNf1 can enhance CXCL12 mRNA in naïve rats, and inhibition of circNf1 can alleviate the upregulation of CXCL12 mRNA in morphine-treated rats. Behavioral tests revealed that inhibition of circNf1 and CXCL12 and the enhancement of miR-330-3p and miR-665 can alleviate morphine analgesic tolerance.

Conclusions: Our study indicates a novel pathway that can contribute to morphine analgesic tolerance, the circRNA to cytokine pathway, in which circNf1 functions as a sponge for miR-330-3p and miR-665 and induces the upregulation of CXCL12 at both transcriptional and translational levels in morphine-treated rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2022.09.018DOI Listing

Publication Analysis

Top Keywords

morphine analgesic
28
mir-330-3p mir-665
20
analgesic tolerance
16
morphine treatment
16
morphine-treated rats
16
upregulation cxcl12
12
morphine
11
circnf1
10
spinal cord
8
contributes morphine
8

Similar Publications

Evaluation of the Drug-Drug Interaction Potential of Cannabidiol Against UGT2B7-Mediated Morphine Metabolism Using Physiologically Based Pharmacokinetic Modeling.

Pharmaceutics

December 2024

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E Spokane Falls Blvd., Spokane, WA 99202, USA.

Morphine is a commonly prescribed opioid analgesic used to treat chronic pain. Morphine undergoes glucuronidation by UDP-glucuronosyltransferase (UGT) 2B7 to form morphine-3-glucuronide and morphine-6-glucuronide. Morphine is the gold standard for chronic pain management and has a narrow therapeutic index.

View Article and Find Full Text PDF

: Opium consumption was recently classified by the International Agency for Research on Cancer (IARC) monograph as carcinogenic to humans based on strong evidence for cancers of the larynx, lung, and urinary bladder, and limited evidence for cancers of the oesophagus, stomach, pancreas, and pharynx. This poses the question of a potential pro-cancer effect of pharmaceutical opioid analgesics. In vitro studies employing a variety of experimental conditions suggest that opioid alkaloids have proliferative or antiproliferative effects.

View Article and Find Full Text PDF

Background: Morphine analgesic tolerance (MAT) limits the clinical application of morphine in the management of chronic pain. IIK7 is a melatonin type 2 (MT2) receptor agonist known to have antioxidant properties. Oxidative stress is recognized as a critical factor in MAT.

View Article and Find Full Text PDF

Breast cancer surgeries offer challenges in perioperative pain management, especially in the presence of inherent risk of postoperative nausea and vomiting (PONV) and postmastectomy pain syndrome (PMPS). Inappropriate opioid consumption was speculated as one of the reasons. Through this study, the influence of objective pain monitoring through a nociception level monitor (NOL) on perioperative course in breast surgeries was investigated.

View Article and Find Full Text PDF

The mu-opioid receptor (MOR) is a major target for the treatment of pain. However, opioids are prone to side effects which limit their effectiveness as analgesics and can lead to opioid use disorders or, even, lethal overdose. The systemic administration of opioid agonists makes it both very difficult to decipher their underlying circuit mechanisms of action and to limit drug action to specific receptor subpopulations to isolate therapeutic effects from adverse side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!