Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities.

Biomaterials

National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, PR China. Electronic address:

Published: November 2022

Radiotherapy (RT), through the generation of reactive oxygen species (ROS) and DNA damage to tumor cells caused by high-energy irradiation, has been a widely applied cancer treatment strategy in clinic. However, the therapeutic effect of traditional RT is restricted by the insufficient radiation energy deposition and the side effects on normal tissues. Recently, multifunctional nano-formulations and synergistic therapy has been developed as attractive strategies for used to enhancing the efficacy and safety of RT. Herein, we show that a bimetallic nanozyme (copper-modified ruthenium nanoparticles, RuCu NPs), containing the high atomic number (Z) element Ru as a novel radiosensitizer, offers an ideal solution to RT sensitization, with ultrasensitive peroxidase (POD)-like activity and catalase (CAT)-like activity. Density functional theory (DFT) calculations also clarified the optimal POD-like catalytic ratio of RuCu NPs and further revealed the mechanism of its supper catalytic activity. Under X-ray exposure, RuCu NPs coated with poly(ethylene glycol) (PEG) exhibited simultaneously improved the ROS production and relieved tumor hypoxia in the acid tumor microenvironment (TME), and demonstrated remarkable therapeutic efficacy in the MDA-MB-231 breast cancer model. Our results provide a proof-of-concept for a RT sensitization strategy, which combine the intrinsic nature of high-Z element and the advantages of nanozymes to overcome the tricky drawbacks existed in radiotherapy, and further open a new direction of exploring novel nanozyme-based strategies for tumor catalytic therapy and synergistic radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121811DOI Listing

Publication Analysis

Top Keywords

rucu nps
12
enhancing anti-tumor
4
anti-tumor ultrasensitive
4
ultrasensitive bimetallic
4
rucu
4
bimetallic rucu
4
rucu nanoparticles
4
nanoparticles radiosensitizers
4
radiosensitizers dual
4
dual enzyme-like
4

Similar Publications

Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities.

Biomaterials

November 2022

National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, PR China. Electronic address:

Radiotherapy (RT), through the generation of reactive oxygen species (ROS) and DNA damage to tumor cells caused by high-energy irradiation, has been a widely applied cancer treatment strategy in clinic. However, the therapeutic effect of traditional RT is restricted by the insufficient radiation energy deposition and the side effects on normal tissues. Recently, multifunctional nano-formulations and synergistic therapy has been developed as attractive strategies for used to enhancing the efficacy and safety of RT.

View Article and Find Full Text PDF

Atomic-Scale Homogeneous RuCu Alloy Nanoparticles for Highly Efficient Electrocatalytic Nitrogen Reduction.

Adv Mater

October 2022

KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.

Ruthenium (Ru) is the most widely used metal as an electrocatalyst for nitrogen (N ) reduction reaction (NRR) because of the relatively high N adsorption strength for successive reaction. Recently, it has been well reported that the homogeneous Ru-based metal alloys such as RuRh, RuPt, and RuCo significantly enhance the selectivity and formation rate of ammonia (NH ). However, the metal combinations for NRR have been limited to several miscible combinations of metals with Ru, although various immiscible combinations have immense potential to show high NRR performance.

View Article and Find Full Text PDF

RuCu Cage/Alloy Nanoparticles with Controllable Electroactivity for Specific Electroanalysis Applications.

Anal Chem

September 2021

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.

Electrochemical nanotags with controllable and multiresponse electroactivity have a great capacity for overcoming the drawbacks of limited target monitoring and inaccurate detection results for electrochemical sensors. In this contribution, double electro-oxidative Ru and Cu metals were integrated into RuCu nanostructures for the generation of dual electro-oxidative signals. A facial approach was proposed for the controllable fabrication of RuCu cage nanoparticles (NPs) and RuCu alloy NPs by simply adjusting the pH value of the reaction system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!