This study prepared surface-modified biochar, including acid washing biochar (HBC) and biochar supported with nanoscale zero-valent iron (nZVI-HBC). The surface-modified biochar was added to sulfamethoxazole (SMX)-contaminated soil with and without earthworms to examine the effects of surface-modified biochar and/or earthworms (Eisenia fetida) on the levels of SMX and its relevant genes (sul1, sul2, and intI1) in the soil. Additionally, the joint toxicity of these exogenous substances on earthworms was investigated. The results showed that although earthworms significantly enhanced the dissipation of SMX in the soils with and without HBC, this effect was not observed in the soil with nZVI-HBC. Among all treatments, nZVI-HBC most effectively accelerated SMX dissipation in the soil, regardless of coexisting earthworms. However, the presence of earthworms significantly increased the total relative abundances of sul1, sul2, and intI1 in the soil. A reasonable explanation for this is the shift in the bacterial community composition rather than the residual level of SMX. When earthworms coexisted, the richness of Proteobacteria evidently increased, which was the main host of the above genes. Both HBC and nZVI-HBC decreased these genes in the soil with earthworms, which was mainly due to the decrease in host genera from Proteobacteria, Actinobacteria, and Gemmatimonadetes. Although there was toxicity of single-surface-modified biochar or SMX on earthworms, the synergistic interaction of surface-modified biochar and SMX resulted in the most serious histopathological changes in earthworms and their highest superoxide dismutase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.114133 | DOI Listing |
J Environ Manage
December 2024
Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China. Electronic address:
Atrazine is one of the most used herbicides, posing non-neglectable threats to ecosystem and human health. This work studied the performance and mechanisms of surface-modified biochar in accelerating atrazine biodegradation by exploring the changes in atrazine metabolites, bacterial communities and atrazine degradation-related genes. Among different types of biochar, nano-hydroxyapatite modified biochar achieved the highest degradation efficiency (85.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
Biochar has proven effective in the remediation of excess nitrogen from soil and water. Excess nitrogen from agricultural fields ends up in aquatic systems and leads to reduced water quality and the proliferation of invasive species. This study aimed to assess the efficiency of chemically surface-modified biochar produced from invasive L.
View Article and Find Full Text PDFEnviron Res
September 2024
CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
This study synthesized novel, green, and easily recoverable surface-modified economical catalysts via hydrothermal treatment (HT) successfully, utilizing biogas residue biochar (BRB), a food waste product from anaerobic fermentation, pyrolyzed at 500 °C for 50 min. Using autoclaves, a total of six solutions were prepared, each having 1 g fine-grinded BRB, surficial modified by adding glycerol (GL) (10 or 20 mL) and SDI water (70 or 60 mL), and heated in an oven at 240 °C, 180 °C, and 120 °C for 24 h. Afterward, the catalysts showed the potential for degradation of widely used emerging pollutants like ciprofloxacin.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2024
Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India.
This study introduces a cost-effective approach to fabricating a porous and ionically surface-modified biochar-based alginate polymer networks composite (SBPC) through air drying. The study critically analyzes the role and concentrations of various components in the success of SBPC. Characterization techniques were employed to evaluate the microstructure and adsorption mechanism, confirming the ability of the adsorbent's carboxyl and hydroxyl groups to eliminate various heavy metal ions in water simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!