This study aimed to investigate the effects of systemic irisin hormone application on new bone formation in peri-implant bone defects. After surgically creating peri-implant bone defects in the metaphyseal part of the tibiae of rats, the rats were randomly divided into 2 equal groups: a control group and an irisin group. In the control group, the rats received no further treatment during the 4-week experimental period after the surgery. The rats in the irisin group, 100 ng/kg irisin was administered intraperitoneally 3 days a week during the 8 weeks experimental period after the surgery. At the end of the experimental period, the rats were euthanized. Implants and surrounding bone tissues were collected for histological new bone formation analysis. The Student t test was used for statistical analysis. There were no significant differences between the groups in the histological analysis, new bone formation and fibrosis (P>0.05). Also, in the irisin group, there was numerically but not statistically more new bone formation detected compared with the controls. Within the limitations of this study, irisin did not affect new bone formation in peri-implant defects, although the numerical values favored the irisin group.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SCS.0000000000008747DOI Listing

Publication Analysis

Top Keywords

bone formation
20
irisin group
16
peri-implant bone
12
bone defects
12
experimental period
12
bone
10
effects systemic
8
irisin
8
systemic irisin
8
formation peri-implant
8

Similar Publications

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Fast, Present and Future of the Concept of Spondyloarthritis.

Curr Rheumatol Rep

January 2025

Rheumatologisches Versorgungszentrum Steglitz, Ruhr Universität Bochum, Schloßstr.110, 12163, Berlin, Germany.

Purpose Of Review: Axial spondyloarthritis (axSpA) is a rather prevalent chronic inflammatory rheumatic disease that affects already relatively young patients. It has been known better since the end of the nineteenth century but quite a lot has been learned since the early 60ies when the first classification (diagnostic) criteria for ankylosing spondylitis (AS) were agreed on. I have been part of many developments in the last 30 years, and I'm happy to have been able to contribute to the scientific progress in terms of diagnosis, imaging, pathophysiology and therapy.

View Article and Find Full Text PDF

Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.

View Article and Find Full Text PDF

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

Accelerated fracture healing accompanied with traumatic brain injury: A review of clinical studies, animal models and potential mechanisms.

J Orthop Translat

January 2025

Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.

The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!