AuNPs-COFs Core-Shell Reversible SERS Nanosensor for Monitoring Intracellular Redox Dynamics.

Anal Chem

Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Published: October 2022

The redox homeostasis in living cells is greatly crucial for maintaining the redox biological function, whereas accurate and dynamic detection of intracellular redox states still remains challenging. Herein, a reversible surface-enhanced Raman scattering (SERS) nanosensor based on covalent organic frameworks (COFs) was prepared to dynamically monitor the redox processes in living cells. The nanosensor was fabricated by modifying the redox-responsive Raman reporter molecule, 2-Mercaptobenzoquione (2-MBQ), on the surface of gold nanoparticles (AuNPs), followed by the in situ coating of COFs shell. 2-MBQ molecules can repeatedly and quickly undergo reduction and oxidation when successively treated with ascorbic acid (AA) and hypochlorite (ClO) (as models of reductive and oxidative species, respectively), which resulted in the reciprocating changes of SERS spectra at 900 cm. The construction of the COFs shell provided the nanosensor with great stability and anti-interference capability, thus reliably visualizing the dynamics of intracellular redox species like AA and ClO by SERS nanosensor. Taken together, the proposed SERS strategy opens up the prospects to investigate the signal transduction pathways and pathological processes related with redox dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c02814DOI Listing

Publication Analysis

Top Keywords

sers nanosensor
12
intracellular redox
12
redox dynamics
8
living cells
8
cofs shell
8
redox
7
sers
5
nanosensor
5
aunps-cofs core-shell
4
core-shell reversible
4

Similar Publications

Plants communicate through volatile organic compounds (VOCs), but real-time monitoring of VOCs for plant intercommunication is not practically possible yet. A nanobionic VOC sensor plant is created to study VOC-mediated plant intercommunication by incorporating surface-enhanced Raman scattering (SERS) nanosensors into a living plant. This sensor allows real-time monitoring of VOC with a sensitivity down to the parts per trillion level.

View Article and Find Full Text PDF

A novel phthalocyanine-based hybrid nanofilm is for the first time successfully applied as an oxidative platform for surface enhanced Raman spectroscopy (SERS) sensing to fine-resolve Raman-inactive compounds. The hybrid is formed by self-assembly of zinc(II) 2,3,9,10,16,17,23,24-Octa[(3',5'-dicarboxy)-phenoxy]phthalocyaninate (ZnPc*) with the solid-supported monolayer of graphene oxide (GO) mediated by zinc acetate metal cluster. Atomic force microscopy, UV-vis and fluorescence spectroscopies confirm that this simple coordination motive in combination with molecular structure of ZnPc* prevents contact quenching of the light-excited triplet state through aromatic stacking with GO particles.

View Article and Find Full Text PDF

Surface-Enhanced Raman Scattering Nanoendoscope for Quantification of a Protein Released under Physiological Stimulation in Brain Tissue.

ACS Nano

December 2024

Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada.

A surface-enhanced Raman scattering (SERS) biosensor with minimal invasiveness and high spatial resolution has been developed as a nanoendoscope to detect changes in protein concentrations at specific sites in biological tissues. While generally applicable to various tissues or proteins, the SERS nanoendoscope is demonstrated for the quantitative detection of S100β, an astrocytic protein whose plasmatic levels are known to vary in several neuropathologies such as Alzheimer's disease, schizophrenia, Down syndrome, Parkinson's disease and epilepsy, but for which intratissular levels have not been locally monitored, demonstrating key attributes of the SERS nanoendoscope. The SERS nanoendoscope is fabricated with densely and well-dispersed deposited gold nanoparticles modified with anti-S100β primary antibody on pulled optical fibers with a tip diameter of 700 nm, conducive to noninvasive and regiospecific detection of the S100β protein in different regions of mouse brain slices under different physiological stimuli with micrometer resolution.

View Article and Find Full Text PDF

Simultaneous detection of mixed colorants adulterated in black tea based on various morphological SERS sensors.

Food Res Int

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Colorant adulteration is a common problem in tea safety control; thus, a rapid identification method is required. In this study, we optimized the fabrication parameters of various sensors to enhance their performance. R6G was used as a probe molecule, demonstrating that the sensnor remained stable for 120 days.

View Article and Find Full Text PDF
Article Synopsis
  • - Alzheimer's disease (AD) requires early diagnosis, and a new SERS sensor made from biomass-derived carbon fibers with silver nanoparticles (Ag@CFs) is being used for detecting amyloid beta Aβ (25-35) to aid in this process.
  • - The sensor's performance was tested with rhodamine 6G, showing a significant enhancement that proves its capability to detect very low concentrations of amyloid beta.
  • - This innovative Ag@CFs-based SERS sensor could offer a non-invasive, cost-effective method for early AD diagnosis, potentially changing how the disease is identified.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!