Glaucoma is the second leading cause of blindness worldwide, and peripapillary atrophy (PPA) is a morphological symptom associated with it. Therefore, it is necessary to clinically detect PPA for glaucoma diagnosis. This study was aimed at developing a detection method for PPA using fundus images with deep learning algorithms to be used by ophthalmologists or optometrists for screening purposes. The model was developed based on localization for the region of interest (ROI) using a mask region-based convolutional neural networks R-CNN and a classification network for the presence of PPA using CNN deep learning algorithms. A total of 2,472 images, obtained from five public sources and one Saudi-based resource (King Abdullah International Medical Research Center in Riyadh, Saudi Arabia), were used to train and test the model. First the images from public sources were analyzed, followed by those from local sources, and finally, images from both sources were analyzed together. In testing the classification model, the area under the curve's (AUC) scores of 0.83, 0.89, and 0.87 were obtained for the local, public, and combined sets, respectively. The developed model will assist in diagnosing glaucoma in screening programs; however, more research is needed on segmenting the PPA boundaries for more detailed PPA detection, which can be combined with optic disc and cup boundaries to calculate the cup-to-disc ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536646PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275446PLOS

Publication Analysis

Top Keywords

deep learning
12
peripapillary atrophy
8
cnn deep
8
glaucoma screening
8
learning algorithms
8
images public
8
public sources
8
sources analyzed
8
ppa
6
atrophy classification
4

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models.

View Article and Find Full Text PDF

Computational Methods for Predicting Chemical Reactivity of Covalent Compounds.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.

In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.

View Article and Find Full Text PDF

While single-cell experiments provide deep cellular resolution within a single sample, some single-cell experiments are inherently more challenging than bulk experiments due to dissociation difficulties, cost, or limited tissue availability. This creates a situation where we have deep cellular profiles of one sample or condition, and bulk profiles across multiple samples and conditions. To bridge this gap, we propose BuDDI (BUlk Deconvolution with Domain Invariance).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!