Identification of an Oxygen Defect in Hexagonal Boron Nitride.

J Phys Chem Lett

Wigner Research Centre for Physics, Post Office Box 49, H-1525Budapest, Hungary.

Published: October 2022

Paramagnetic fluorescent defects in two-dimensional hexagonal boron nitride (hBN) are promising building blocks for quantum information processing. Although numerous defect-related single-photon sources and a few quantum bits have been found, except for the boron vacancy, their identification is still elusive. Here, we demonstrate that the comparison of experimental and first-principles simulated electron paramagnetic resonance (EPR) spectra is a powerful tool for defect identification in hBN, and first-principles modeling is inevitable in this process as a result of the dense nuclear spin environment of hBN. In particular, a recently observed EPR center is associated with the negatively charged oxygen vacancy complex by means of the many-body perturbation theory method on top of hybrid density functional calculations. To our surprise, the negatively charged oxygen vacancy complex produces a coherent emission around 2 eV with a well-reproducing previously recorded photoluminescence spectrum of some quantum emitters, according to our calculations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589898PMC
http://dx.doi.org/10.1021/acs.jpclett.2c02687DOI Listing

Publication Analysis

Top Keywords

hexagonal boron
8
boron nitride
8
negatively charged
8
charged oxygen
8
oxygen vacancy
8
vacancy complex
8
identification oxygen
4
oxygen defect
4
defect hexagonal
4
nitride paramagnetic
4

Similar Publications

Challenges in Synthesizing Hexagonal Boron Nitride "Quantum" Dots.

Nano Lett

January 2025

School of Physics, Xidian University, No. 2 Taibai South Road, Xi'an 710071, China.

Fluorescent nanodots derived from hexagonal boron nitride (-BN) have garnered significant attention over the past decade. As a result, various synthesis methods─encompassing both bottom-up hydrothermal reactions and top-down exfoliation processes─have been deemed "successful" in producing BN nanodots. Nevertheless, this Perspective emphasizes that substantial challenges remain in the synthesis of "true" nanodots composed mainly of -BN units, as many so-called successful syntheses reported in the literature involve some mischaracterizations.

View Article and Find Full Text PDF

Unveiling a Tunable Moiré Bandgap in Bilayer Graphene/hBN Device by Angle-Resolved Photoemission Spectroscopy.

Adv Sci (Weinh)

January 2025

School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.

Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.

View Article and Find Full Text PDF

Using the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.

View Article and Find Full Text PDF

Electrons in topological flat bands can form new topological states driven by correlation effects. The pentalayer rhombohedral graphene/hexagonal boron nitride (hBN) moiré superlattice was shown to host fractional quantum anomalous Hall effect (FQAHE) at approximately 400 mK (ref. ), triggering discussions around the underlying mechanism and role of moiré effects.

View Article and Find Full Text PDF

Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!