Graphene and Liquid Metal Integrated Multifunctional Wearable Platform for Monitoring Motion and Human-Machine Interfacing.

ACS Nano

Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia.

Published: December 2022

Motion sensors are an essential component of many electronic systems. However, the development of inertial motion sensors based on fatigue-free soft proof mass has not been explored extensively in the field of soft electronics. Nontoxic gallium-based liquid metals are an emerging class of material that exhibit attractive electromechanical properties, making them excellent proof mass materials for inertial sensors. Here, we propose and demonstrate a fully soft laser-induced graphene (LIG) and liquid metal-based inertial sensor integrated with temperature, humidity, and breathing sensors. The inertial sensor design confines a graphene-coated liquid metal droplet inside a fluidic channel, rolling over LIG resistive electrode. The proposed sensor architecture and material realize a highly mobile proof mass and a vibrational space for its oscillation. The inertial sensor exhibits a high sensitivity of 6.52% m s and excellent repeatability (over 12 500 cycles). The platform is fabricated using a scalable, rapid laser writing technique and integrated with a programmable system on a chip (PSoC) to function as a stand-alone system for real-time wireless monitoring of movement patterns and the control of a robotic arm. The developed printed inertial platform is an excellent candidate for the next-generation of wearables motion tracking platforms and soft human-machine interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c06180DOI Listing

Publication Analysis

Top Keywords

proof mass
12
inertial sensor
12
liquid metal
8
motion sensors
8
inertial
6
graphene liquid
4
metal integrated
4
integrated multifunctional
4
multifunctional wearable
4
wearable platform
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!