Background: Paramagnetic species such as O and free radicals can enhance T and T relaxation times. If the change in relaxation time is sufficiently large, the contrast will be generated in magnetic resonance images. Since radiation is known to be capable of altering the concentration of O and free radicals during water radiolysis, it may be possible for radiation to induce MR signal change.
Purpose: We present the first reported instance of x-ray-induced MR signal changes in water phantoms and investigate potential paramagnetic relaxation enhancement mechanisms associated with radiation chemistry changes in oxygen and free radical concentrations.
Methods: Images of water and 10 mM coumarin phantoms were acquired on a 0.35 T MR-linac before, during, and after a dose delivery of 80 Gy using an inversion-recovery dual-echo sequence with water nullified. Radiation chemistry simulations of these conditions were performed to calculate changes in oxygen and free radical concentrations. Published relaxivity values were then applied to calculate the resulting T change, and analytical MR signal equations were used to calculate the associated signal change.
Results: Compared to pre-irradiation reference images, water phantom images taken during and after irradiation showed little to no change, while coumarin phantom images showed a small signal loss in the irradiated region with a contrast-to-noise ratio (CNR) of 1.0-2.5. Radiation chemistry simulations found oxygen depletion of -11 µM in water and -31 µM in coumarin, resulting in a T lengthening of 24 ms and 68 ms respectively, and a simulated CNR of 1.0 and 2.8 respectively. This change was consistent with observations in both direction and magnitude. Steady-state superoxide, hydroxyl, hydroperoxyl, and hydrogen radical concentrations were found to contribute less than 1 ms of T change.
Conclusion: Observed radiation-induced MR signal changes were dominated by an oxygen depletion mechanism. Free radicals were concluded to play a minor secondary role under steady-state conditions. Future applications may include in vivo FLASH treatment verification but would require an MR sequence with a better signal-to-noise ratio and higher temporal resolution than the one used in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930196 | PMC |
http://dx.doi.org/10.1002/mp.16011 | DOI Listing |
Nat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024 PR China. Electronic address:
The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.
Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!