Phosphoribosyl pyrophosphate synthetase-1 (PRPS-1; EC 2.7.6.1.) catalyzes the binding of phosphate-group to ribose 5-phosphate, forming the 5-phosphoribosyl-1-pyrophosphate, which is necessary for the salvage pathways of purine and pyrimidine, pyridine nucleotide cofactors - NAD and NADP, the amino acids histidine and tryptophan biosynthesis. We aimed to investigate the impact of the different effectors on the activity of PRPS-1, to check the activity of the enzyme in vitro in a wide range of pHs and investigate some structural essentials of the enzyme, isolated from brain and liver. Molecular docking analyses were used to delineate the essentials of PRPS-1 structure, to find out the existence of enzyme effectors. Previously created by us kit was used for determination of the activity of PRPS-1 based on the formation of the inorganic phosphates (λ = 700 nm, Cary 60, Agilent, USA). Effectors impact on the activity of PRPS-1 was evaluated. In silico results of the effectors were later proven by in vitro experiments. For the first time biochemical essentials, including the existence of the multiple pockets, involvement of the amino acids into the processes of interactions with the effectors, evolutional of the sequence conservation, tissue depended V differences were identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-022-01104-1 | DOI Listing |
Cell Biochem Biophys
December 2022
Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia.
Phosphoribosyl pyrophosphate synthetase-1 (PRPS-1; EC 2.7.6.
View Article and Find Full Text PDFCell Death Differ
January 2022
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive.
View Article and Find Full Text PDFCell Metab
October 2021
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:
Ionizing radiation-induced DNA damages cause genome instability and are highly cytotoxic. Deoxyribonucleotide metabolism provides building blocks for DNA repair. Nevertheless, how deoxyribonucleotide metabolism is timely regulated to coordinate with DNA repair remains elusive.
View Article and Find Full Text PDFArch Microbiol
December 1995
Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
Rhodobacter capsulatus fixes CO2 via the Calvin reductive pentose phosphate pathway and, like some other nonsulfur purple bacteria, is known to synthesize two distinct structural forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Cosmid clones that hybridized to form I (cbbLcbbS) and form II (cbbM) RubisCO gene probes were isolated from a genomic library of R. capsulatus strain SB1003.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!