A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surrogate modeling of articular cartilage degradation to understand the synergistic role of MMP-1 and MMP-9: a case study. | LitMetric

A characteristic feature of arthritic diseases is cartilage extracellular matrix (ECM) degradation, often orchestrated by the overexpression of matrix metalloproteinases (MMPs) and other proteases. The interplay between fibril level degradation and the tissue-level aggregate response to biomechanical loading was explored in this work by a computational multiscale cartilaginous model. We considered the relative abundance of collagenases (MMP-1) and gelatinases (MMP-9) in surrogate models, where the diffusion (spatial distribution) of these enzymes and the subsequent, co-localized fibrillar damage were spatially randomized with Latin Hypercube Sampling. The computational model was constructed by incorporating the results from prior molecular dynamics simulations (tensile test) of microfibril degradation into a hyper-elastoplastic fibril-reinforced cartilage model. Including MMPs-mediated collagen fibril-level degradation in computational models may help understand the ECM pathomechanics at the tissue level. The mechanics of cartilage tissue and fibril show variations in mechanical integrity depending on the different combinations of MMPs-1 and 9 with a concentration ratio of 1:1, 3:1, and 1:3 in simulated indentation tests. The fibril yield (local failure) was initiated at 20.2 ± 3.0 (%) and at 23.0 ± 2.8 (%) of bulk strain for col 1:gel 3 and col 3: gel 1, respectively. The reduction in failure stress (global response) was 39.8% for col 1:gel 3, 37.5% for col 1:gel 1, and 36.7% for col 3:gel 1 compared with the failure stress of the degradation free tissue. These findings indicate that cartilage's global and local mechanisms of failure largely depend on the relative abundance of the two key enzymes-collagenase (MMP-1) and gelatinase (MMP-9) and the spatial characteristics of diffusion across the layers of the cartilage ECM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-022-01630-0DOI Listing

Publication Analysis

Top Keywords

col 1gel
12
relative abundance
8
failure stress
8
degradation
6
cartilage
5
col
5
surrogate modeling
4
modeling articular
4
articular cartilage
4
cartilage degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!