ChemPert: mapping between chemical perturbation and transcriptional response for non-cancer cells.

Nucleic Acids Res

Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Esch-sur-Alzette, L-4367 Belvaux, Luxembourg.

Published: January 2023

Prior knowledge of perturbation data can significantly assist in inferring the relationship between chemical perturbations and their specific transcriptional response. However, current databases mostly contain cancer cell lines, which are unsuitable for the aforementioned inference in non-cancer cells, such as cells related to non-cancer disease, immunology and aging. Here, we present ChemPert (https://chempert.uni.lu/), a database consisting of 82 270 transcriptional signatures in response to 2566 unique perturbagens (drugs, small molecules and protein ligands) across 167 non-cancer cell types, as well as the protein targets of 57 818 perturbagens. In addition, we develop a computational tool that leverages the non-cancer cell datasets, which enables more accurate predictions of perturbation responses and drugs in non-cancer cells compared to those based onto cancer databases. In particular, ChemPert correctly predicted drug effects for treating hepatitis and novel drugs for osteoarthritis. The ChemPert web interface is user-friendly and allows easy access of the entire datasets and the computational tool, providing valuable resources for both experimental researchers who wish to find datasets relevant to their research and computational researchers who need comprehensive non-cancer perturbation transcriptomics datasets for developing novel algorithms. Overall, ChemPert will facilitate future in silico compound screening for non-cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825489PMC
http://dx.doi.org/10.1093/nar/gkac862DOI Listing

Publication Analysis

Top Keywords

non-cancer cells
16
transcriptional response
8
non-cancer
8
non-cancer cell
8
computational tool
8
chempert
5
cells
5
chempert mapping
4
mapping chemical
4
perturbation
4

Similar Publications

Development of chimeric antigen receptor T cells targeting cancer-expressing podocalyxin.

Regen Ther

March 2025

Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.

Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.

View Article and Find Full Text PDF

Cancer is characterized by chronic inflammation and hypercoagulability, with an excess of venous thromboembolism (VTE). Tissue factor, the initiator of blood coagulation, circulates associated with extracellular vesicles (EV-TF). Studies investigating EV-TF between cancer-associated and non-cancer-associated VTE are lacking.

View Article and Find Full Text PDF

Lactoferrin Modulates Radiation Response Under Hypoxic Conditions, Possibly Through the Regulation of ROS Production in a Cell Type-Specific Manner.

Antioxidants (Basel)

December 2024

Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.

Lactoferrin (LF) is an iron-binding glycoprotein of the transferrin family and has been suggested to have a variety of biological functions, including anticancer activity. However, the effects of LF and its mechanisms in anticancer therapies, especially in radiotherapy against cancer cells under hypoxic conditions, are not well-determined. In this study, we focused on the molecular mechanisms of LF functions in cells under hypoxic conditions.

View Article and Find Full Text PDF

Inverse dose protraction effects of high-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).

View Article and Find Full Text PDF

In this study, the copper(II) complex [Cu(chromoneTSC)Cl]•0.5HO•0.0625CHOH (where chromoneTSC = -Ethyl-2-((4-oxo-4H-chromen-3-yl)methylene)-hydrazinecarbothioamide) was synthesized and characterized; then used to carry out studies in combination with berberine chloride (BBC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!