Xylans, a family of xylose-based polysaccharides, are dietary fibers resistant to digestion. They therefore reach the large intestine intact; there, they are utilized by members of the gut microbiota. They are initially broken down by primary degraders that utilize extracellular xylanases to cleave xylan into smaller oligomers. The resulting xylooligosaccharides (XOS) can either be further metabolized directly by primary degraders or cross-feed secondary consumers, including . While several species have metabolic systems for XOS, most grow poorly on longer-chain XOS and xylan substrates. In this study, we isolated strains of Bifidobacterium pseudocatenulatum and observed that some, including B. pseudocatenulatum ED02, displayed growth on XOS with a high degree of polymerization (DP) and straight-chain xylan, suggesting a primary degrader phenotype that is rare in . analyses revealed that only the genomes of these xylan-fermenting (xylan) strains contained an extracellular GH10 endo-β-1.4 xylanase, a key enzyme for primary degradation of xylan. The presence of an extracellular xylanase was confirmed by the appearance of xylan hydrolysis products in cell-free supernatants. Extracellular xylanolytic activity was only detected in xylan strains, as indicated by the production of XOS fragments with a DP of 2 to 6, identified by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, fecal fermentations revealed that strains with a xylan phenotype can persist with xylan supplementation. These results indicate that xylan B. pseudocatenulatum strains may have a competitive advantage in the complex environment of the gastrointestinal tract, due to their ability to act as primary degraders of xylan through extracellular enzymatic degradation. The beneficial health effects of dietary fiber are now well established. Moreover, low fiber consumption is associated with increased risks of metabolic and systemic diseases. This so-called "fiber gap" also has a profound impact on the composition of the gut microbiome, leading to a disrupted or dysbiotic microbiota. Therefore, understanding the mechanisms by which keystone bacterial species in the gut utilize xylans and other dietary fibers may provide a basis for developing strategies to restore gut microbiome function. The results described here provide biochemical and genetic evidence for primary xylan utilization by human-derived Bifidobacterium pseudocatenulatum and show also that cooperative utilization of xylans occurs among other members of this species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599329 | PMC |
http://dx.doi.org/10.1128/aem.01299-22 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
This study investigated whether the galactooligosaccharide (GOS)-metabolism-related genes (GOS-cluster) in contribute to alleviating glucose and lipid metabolic disorders in type 2 diabetic mice. Genomic analysis of 69 strains based on the GOS-cluster, combined with in vitro fermentation experiments, revealed that high-GOS-cluster strains (≥24 MFS, ≥39 GOS-cluster) demonstrated superior GOS utilization and bile salt tolerance. In vivo the high-GOS-cluster strains resulted in a significant reduction of blood glucose levels by 18.
View Article and Find Full Text PDFNutrients
December 2024
Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium.
Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
During the late laying period, the intestinal barrier of laying hens is susceptible to damage, resulting in enteric infections and even systemic inflammatory responses, posing a major challenge for the poultry industry. Therefore, it is crucial to investigate methods for addressing intestinal inflammation in late laying hens. In order to maximize the production potential of egg laying chickens, farmers usually use various feed additives to prevent damage to the intestinal barrier.
View Article and Find Full Text PDFImeta
December 2024
Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry College of Animal Science and Technology, Hunan Agricultural University Changsha China.
Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!