Background: In the last few years, in silico tools, including drug repurposing coupled with structure-based virtual screening, have been extensively employed to look for anti-COVID-19 agents.
Objective: The present review aims to provide readers with a portrayal of computational approaches that could be conducted more quickly and cheaply to novel anti-viral agents. Particular attention is given to docking-based virtual screening.
Methods: The World Health Organization website was consulted to gain the latest information on SARS-CoV-2, its novel variants and their interplay with COVID-19 severity and treatment options. The Protein Data Bank was explored to look for 3D coordinates of SARS-CoV-2 proteins in their free and bound states, in the wild-types and mutated forms. Recent literature related to in silico studies focused on SARS-CoV-2 proteins was searched through PubMed.
Results: A large amount of work has been devoted thus far to computationally targeting viral entry and searching for inhibitors of the S-protein/ACE2 receptor complex. Another large area of investigation is linked to in silico identification of molecules able to block viral proteases -including Mpro- thus avoiding maturation of proteins crucial for virus life cycle. Such computational studies have explored the inhibitory potential of the most diverse molecule databases (including plant extracts, dietary compounds, FDA approved drugs).
Conclusion: More efforts need to be dedicated in the close future to experimentally validate the therapeutic power of in silico identified compounds in order to catch, among the wide ensemble of computational hits, novel therapeutics to prevent and/or treat COVID- 19.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867329666221004104430 | DOI Listing |
JMIR Med Educ
January 2025
Digital Society Initiative, University of Zurich, Zurich, Switzerland.
Background: The increased use of digital data in health research demands interdisciplinary collaborations to address its methodological complexities and challenges. This often entails merging the linear deductive approach of health research with the explorative iterative approach of data science. However, there is a lack of structured teaching courses and guidance on how to effectively and constructively bridge different disciplines and research approaches.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK.
Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.
Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.
Soft comput
August 2024
Department of Computer Engineering, Suleyman Demirel University, Isparta, Turkey.
[This retracts the article DOI: 10.1007/s00500-022-06940-0.].
View Article and Find Full Text PDFPLoS One
January 2025
Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.
This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.
Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!