Rapid, direct identification and quantitation of protein charge variants, and assessment of critical quality attributes with high sensitivity are important drivers required to accelerate the development of biotherapeutics. We describe the use of an enhanced microfluidic chip-based integrated imaged capillary isoelectric focusing-mass spectrometry (icIEF-MS) technology to assess multiple quality attributes of intact antibodies in a single run. Results demonstrate comprehensive detection of multiple charge variants of an aglycosylated knob-into-hole bispecific antibody. Upfront, on-chip separation by icIEF coupled to MS provides the orthogonal separation required to resolve and identify acidic posttranslational modifications including difficult-to-detect deamidation and glycation events at the intact protein level. In addition, on-chip UV detection enables pI determination and relative quantitation of charge isoforms. Six charge variant peaks were resolved by icIEF, mobilized toward the on-chip electrospray tip and directly identified by in-line icIEF-MS using a connected quadrupole time-of-flight mass spectrometer. In addition to acidic charge variants, basic variants were identified as C-terminal lysine, N-terminal cyclization, proline amidation, and the combination of modifications (not typically identified by other intact methods), including lysine and one or two hexose additions. Nonspecific chain cleavages were also resolved, along with their acidic charge variants, demonstrating highly sensitive and comprehensive intact antibody multi-attribute characterization within a 15-min run time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092839 | PMC |
http://dx.doi.org/10.1002/elps.202200165 | DOI Listing |
Viruses
January 2025
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Lukasiewicza Street 5, 50-370 Wroclaw, Poland.
This study refers to the application of an advanced tool in the form of numerical modelling in order to develop a low-waste hot die forging technology to produce a connecting rod forging. The technology aims at ensuring a limited amount of the charge material is necessary to produce one forging, as well as minimizing forging forces, and thus the electric energy consumption. The study includes a verification of the current production technology, which constituted the basis for the construction and development of a numerical model.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Almazov National Medical Research Centre, 197341 St. Petersburg, Russia.
Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4 of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4 in the R219C VUS.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Three new hexagonal perovskites with CsMMRhCl (M = Na, Ag; M = Mn, Fe) stoichiometry have been synthesized from solution precipitation reactions. These air-stable compounds crystallize as triply cation-ordered variants of the 6H perovskite structure. This structure contains octahedra that share a common face to form MRhCl dimers that are arranged on a two-dimensional triangular network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!