The roles of ε4 and ε2-the strongest genetic risk and protective factors for Alzheimer's disease-in glial responses remain elusive. We tested the hypothesis that alleles differentially impact glial responses by investigating their effects on the glial transcriptome from elderly control brains with no neuritic amyloid plaques. We identified a cluster of microglial genes that are upregulated in ε4 and downregulated in ε2 carriers relative to ε3 homozygotes. This microglia- cluster is enriched in phagocytosis-including and -and proinflammatory genes, and is also detectable in brains with frequent neuritic plaques. Next, we tested these findings in knock-in mice exposed to acute (lipopolysaccharide challenge) and chronic (cerebral β-amyloidosis) insults and found that these mice partially recapitulate human -linked expression patterns. Thus, the ε4 allele might prime microglia towards a phagocytic and proinflammatory state through an axis in normal aging as well as in Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531903PMC
http://dx.doi.org/10.1038/s43587-021-00123-6DOI Listing

Publication Analysis

Top Keywords

glial transcriptome
8
normal aging
8
alzheimer's disease
8
glial responses
8
alleles glial
4
transcriptome normal
4
aging alzheimer's
4
disease roles
4
roles ε4
4
ε4 ε2-the
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.

Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Novo Nordisk A/S, Søborg, Denmark.

Background: Evidence suggests glucagon-like peptide 1 receptor agonists (GLP-1RAs) may have therapeutic potential in Alzheimer's disease (AD). Cumulative evidence has indicated a potential reduction in cognitive decline in people with AD, while real-world evidence has shown decreased dementia risk in patients with type 2 diabetes. Non-clinical data reveal that GLP-1RAs impact neuroinflammation and other biological processes believed to be involved in AD pathophysiology, including effects on central and peripheral immune cells.

View Article and Find Full Text PDF

Background: Chronic stress promotes life-long risk for neuropsychiatric decline by increasing neuroinflammation and disrupting synaptic health and plasticity. Our lab and others have recently demonstrated that non-invasive gamma sensory stimulation (flicker) modulates immune signaling, restores microglial function, and improves cognitive performance in mouse models of Alzheimer's disease (AD). However, no research to date has studied the effects of flicker in the context of stress.

View Article and Find Full Text PDF

Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!