Challenges and opportunities for chiral covalent organic frameworks.

Chem Sci

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China

Published: August 2022

Similar Publications

An Ultrastable Integrated Anode with ∼95 wt.% SiO via In Situ Electrode-Scale Conformal Coating.

ACS Nano

January 2025

Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.

View Article and Find Full Text PDF

The Importance and Discovery of Highly Connected Covalent Organic Framework Net Topologies.

J Am Chem Soc

January 2025

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

Furthering the field of synthetic organic chemistry from the discrete molecules regime to the extended structure regime, covalent organic frameworks (COFs) represent a new genre of crystalline porous materials featuring designability with molecular-level precision, well-defined porosity, and exceptional stability imparted by the robust covalent linkages reticulating organic molecules. The topology of COFs is a principal feature that regulates their functionality and usability for emerging technologies. Profound comprehension of network topologies and maneuvering them toward targeted applications are crucial to advancing the realm of COF research and developing novel functional materials for exciting breakthroughs.

View Article and Find Full Text PDF

Dynamic Covalent Spiropyran Exchange for Rapid Structural Diversification.

Angew Chem Int Ed Engl

January 2025

Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory of Organic Chemistry and Functional Materials, Brook-Taylor-Str. 2, 12489, Berlin, GERMANY.

Here we disclose that spiropyrans are able to undergo dynamic covalent exchange via their corresponding merocyanine isomers. In the latter, the indolinium moieties can be exchanged by a Michael-type addition-elimination sequence, in which a methylene indoline attacks a merocyanine and subsequently the initial indoline fragment is cleaved. The rate and position of the exchange equilibrium strongly depend on the reaction conditions as well as the substitution pattern on the methylene indoline fragments.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are a promising platform for heterogeneous photocatalysis due to their stability and design diversity, but their potential is often restricted by unmanageable targeted excitation and charge transfer. Herein, a bimetallic COF integrating photosensitizers and catalytic sites is designed to facilitate locally ultrafast charge transfer, aiming to improve the photocatalytic reduction of CO. The strategy uses a "one-pot" method to synthesize the bimetallic COF (termed PBCOF) through in situ Schiff-base condensation of Pyrene with MBpy (M = Ru, Re) units.

View Article and Find Full Text PDF

To rival commercial organic electrolytes, it is important to focus on safe, cheap aqueous electrolytes with lower salt concentration (≈5.0 m) and a wider electrochemical stable potential window (ESPW). This study reports the facile synthesis of porphyrin-based covalent organic polymers (PTZ-COP, CBZ-COP, and TPA-COP) through a one-pot aromatic electrophilic polycondensation reaction between pyrrole and monomeric aldehydes (PTZ-CHO, CBZ-CHO and TPA-CHO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!