CO is the main greenhouse gas in Earth's atmosphere, and has been causing global warming since the industrial revolution. Therefore, technologies to mitigate carbon emissions have attracted extensive research. Shale gas reservoirs could serve as potential sequestration space for CO. This paper aims to gain insight in the CO adsorption behavior and mechanism in Longmaxi shale. The micropore filling theory is the best model for CO adsorption in the shale samples with the smallest MSR (Mean Square of Residual). This model fits better than that of the monolayer adsorption and multi-layer adsorption theories. Specifically, micropore filling adsorption mainly occurs in micropores, including the closed end of slit pores, capillary pores, and ink-shaped pores. Molecular layer adsorption mainly occurs in mesopores and macropores, including the open end of slit pores, plate pores, capillary pores, and ink-shaped pores. Moreover, the prediction model of CO storage quantity in deep shale gas reservoirs of China is established. This model shows that 91.5-388.89 × 10 m of CO could in theory be stored in an adsorbed state. CO is mostly stored by an adsorbed state (higher than 95%) and a free state with good security and low leakage risk. The results from this work are of specific interest for global research on CO adsorption characteristics and adsorption mechanisms in different pore structures. Furthermore, it provides certain guidance for geological storage of CO in shale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469489PMC
http://dx.doi.org/10.1039/d2ra03632kDOI Listing

Publication Analysis

Top Keywords

shale gas
12
adsorption
9
adsorption behavior
8
behavior mechanism
8
mechanism longmaxi
8
longmaxi shale
8
gas reservoirs
8
micropore filling
8
adsorption occurs
8
slit pores
8

Similar Publications

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.

View Article and Find Full Text PDF

Research and development of new intelligent foaming and discharging agent system.

Sci Rep

December 2024

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.

The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.

View Article and Find Full Text PDF

Experimental study on ultrasonic reduction of irreducible water saturation in low permeability reservoir.

Sci Rep

December 2024

Puyang Key Laboratory of Sound Field Assisted Oil and Gas Development, Puyang, 457000, China.

Irreducible water saturation is an important factor affecting the development effect of low permeability reservoir. Using the self-developed ultrasonic generator, kerosene was used as simulated oil, the natural low-permeability siltstone cores with different physical properties in Zhongyuan Oilfield were selected for indoor oil displacement experiment, and the effect of ultrasonic action on the saturation of irreducible water in low-permeability reservoirs was evaluated. It was found that ultrasound can further reduce the saturation of irreducible water on the basis of oil flooding.

View Article and Find Full Text PDF

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!