The endeavor to detect human activities and behaviors is targeted as a real-time detection mechanism that tends to predict the form of human motions and actions. Though sensors like accelerometer and gyroscopes are noticeable in human motion detection, categorizing unique and individual human gestures require software-based assistance. With the widespread implementation of machine learning algorithms, human actions can be distinguished into multiple classes. Several state-of-the-art machine learning algorithms can be applied to this specified field which will give suitable outcomes, yet due to the bulk of the dataset, complexity can be made apparent, which will reduce the efficiency of the model. In our proposed research, ensemble learning methods have been established by assembling several trained and tuned machine learning models. The adopted dataset for the model has been preprocessed through PCA (principal component analysis), SMOTE oversampling (synthetic minority oversampling technique), and K-means clustering, which reduced the dataset to essentials, keeping the weight of the features intact and reducing complexity. Maximum accuracy of 99.36% was achieved from both stacking and voting ensemble methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527441PMC
http://dx.doi.org/10.1155/2022/6963891DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning methods
8
learning algorithms
8
human
6
learning
5
employment ensemble
4
machine
4
ensemble machine
4
methods human
4
human activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!