A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superlative Feature Selection Based Image Classification Using Deep Learning in Medical Imaging. | LitMetric

Superlative Feature Selection Based Image Classification Using Deep Learning in Medical Imaging.

J Healthc Eng

School of Computer Science and Engineering (SCE), Taylor's University, Subang Jaya, Malaysia.

Published: October 2022

Medical image recognition plays an essential role in the forecasting and early identification of serious diseases in the field of identification. Medical pictures are essential to a patient's health record since they may be used to control, manage, and treat illnesses. On the other hand, image categorization is a difficult problem in diagnostics. This paper provides an enhanced classifier based on the outstanding Feature Selection oriented Clinical Classifier using the Deep Learning (DL) model, which incorporates preprocessing, extraction of features, and classifying. The paper aims to develop an optimum feature extraction model for successful medical imaging categorization. The proposed methodology is based on feature extraction with the pretrained EfficientNetB0 model. The optimum features enhanced the classifier performance and raised the precision, recall, F1 score, accuracy, and detection of medical pictures to improve the effectiveness of the DL classifier. The paper aims to develop an optimum feature extraction model for successful medical imaging categorization. The optimum features enhanced the classifier performance and raised the result parameters for detecting medical pictures to improve the effectiveness of the DL classifier. Experiment findings reveal that our presented approach outperforms and achieves 98% accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529489PMC
http://dx.doi.org/10.1155/2022/7028717DOI Listing

Publication Analysis

Top Keywords

medical imaging
12
medical pictures
12
enhanced classifier
12
feature extraction
12
feature selection
8
deep learning
8
paper aims
8
aims develop
8
develop optimum
8
optimum feature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!