Diatoms are single-celled microalgae with silica-based cell walls (frustules) that are abundantly present in aquatic habitats, and form the basis of the food chain in many ecosystems. Many benthic diatoms have the remarkable ability to glide on all natural or man-made underwater surfaces using a carbohydrate- and protein-based adhesive to generate traction. Previously, three glycoproteins, termed FACs (Frustule Associated Components), have been identified from the common fouling diatom Craspedostauros australis and were implicated in surface adhesion through inhibition studies with a glycan-specific antibody. The polypeptide sequences of FACs remained unknown, and it was unresolved whether the FAC glycoproteins are indeed involved in adhesion, or whether this is achieved by different components sharing the same glycan epitope with FACs. Here we have determined the polypeptide sequences of FACs using peptide mapping by LC-MS/MS. Unexpectedly, FACs share the same polypeptide backbone (termed CaFAP1), which has a domain structure of alternating Cys-rich and Pro-Thr/Ser-rich regions reminiscent of the gel-forming mucins. By developing a genetic transformation system for C. australis, we were able to directly investigate the function of CaFAP1-based glycoproteins in vivo. GFP-tagging of CaFAP1 revealed that it constitutes a coat around all parts of the frustule and is not an integral component of the adhesive. CaFAP1-GFP producing transformants exhibited the same properties as wild type cells regarding surface adhesion and motility speed. Our results demonstrate that FAC glycoproteins are not involved in adhesion and motility, but might rather act as a lubricant to prevent fouling of the diatom surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.13287 | DOI Listing |
Commun Biol
September 2024
B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
Raphid diatoms are one of the few eukaryotes capable of gliding motility, which is remarkably fast and allows for quasi-instantaneous directional reversals. Besides other mechanistic models, it has been suggested that an actomyosin system provides the force for diatom gliding. However, in vivo data on the dynamics of actin and myosin in diatoms are lacking.
View Article and Find Full Text PDFMicrob Ecol
February 2024
CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
It has long been hypothesized that benthic motile pennate diatoms use phototaxis to optimize photosynthesis and minimize photoinhibitory damage by adjusting their position within vertical light gradients in coastal benthic sediments. However, experimental evidence to test this hypothesis remains inconclusive, mainly due to methodological difficulties in studying cell behavior and photosynthesis over realistic spatial microscale gradients of irradiance and cell position. In this study, a novel experimental approach was developed and used to test the hypothesis of photosynthesis optimization through motility, based on the combination of single-cell in vivo chlorophyll fluorometry and microfluidic chips.
View Article and Find Full Text PDFMar Drugs
January 2024
Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
In extreme environments such as Antarctica, a diverse range of organisms, including diatoms, serve as essential reservoirs of distinctive bioactive compounds with significant implications in pharmaceutical, cosmeceutical, nutraceutical, and biotechnological fields. This is the case of the new species IMA082A and IMA088A Trentin, Moschin, Lopes, Custódio and Moro (Bacillariophyta) that are here explored for the first time for possible biotechnological applications. For this purpose, a bioprospection approach was applied by preparing organic extracts (acetone and methanol) from freeze-dried biomass followed by the evaluation of their in vitro antioxidant properties and inhibitory activities on enzymes related with Alzheimer's disease (acetylcholinesterase: AChE, butyrylcholinesterase: BChE), Type 2 diabetes mellitus (T2DM, α-glucosidase, α-amylase), obesity (lipase) and hyperpigmentation (tyrosinase).
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2024
Tokyo Diatomology Lab, 2-3-2 Nukuikitamachi, Koganei, Tokyo 184-0015, Japan.
Frustules, whose length spans from a few micrometers to more than a hundred micrometers, have been the subject of various modifications to improve their physical properties because of their complex porous silica structure. However, three-dimensional measurements of these changes can be challenging because of the complex 3D architecture and limitations of known methods. In this study, we present a new method that applies digital holographic microscopy (DHM) to analyze controlled etched frustules and observe real-time degradation of frustules at the single-cell level.
View Article and Find Full Text PDFPhytoKeys
September 2023
Istanbul University, Faculty of Science, Department of Biology, 34134 Istanbul, Turkiye Istanbul University Istanbul Turkiye.
E.J. Cox is a diatom genus comprising 17 taxa reported from various regions of the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!