Background: Sperm transit through the female reproductive relies upon maintenance of sperm motility. Peroxisome-proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor with roles in glucose metabolism and reproductive processes including placental function. PPARγ roles in the mammalian postejaculatory sperm function are incompletely defined.
Objectives: Determine expression, localization, and functions of PPARγ in postejaculatory bovine sperm.
Materials And Methods: Frozen-thawed bovine sperm from three to four different bulls were pooled and subjected to immunofluorescence and western blot for detection and localization of PPARγ. Functions in sperm energetics were explored through the addition of pharmacological inhibition (GW; GW9662) and activation (Ros; Rosiglitazone) in the culture medium at 0 and 24 h under non-capacitating conditions. Samples were analyzed for sperm kinematics (CASA) and mitochondrial membrane potential (MMP; JC-1 fluorophore).
Results: PPARγ was detected in bovine sperm and co-localized to the acrosome with re-localization to the equatorial region in acrosome-compromised sperm. The addition of Ros 50 µM for 24 h maintained superior total and progressive motility of sperm compared to vehicle control (VC-DMSO 0.01%). The PPARγ antagonist GW 1 µM was detrimental to both total and progressive motility. A challenge experiment (Ros + GW) partially rescued total and progressive motility phenotypes observed with GW incubation. GW-treated samples had a lower number of sperm with high MMP at 24 h compared to Ros or VC. The negative GW MMP phenotype was reversed with the addition of Ros + GW. Likewise, GW-treated samples had more sperm with low MMP compared to VC and Ros, and this phenotype was partially restored with Ros + GW.
Conclusion: PPARγ is expressed in post-ejaculatory bovine sperm with regulatory roles in sperm motility and MMP. These findings implicate PPARγ as a novel regulator of postejaculatory mammalian sperm energetics through non-canonical signaling mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/andr.13308 | DOI Listing |
BMC Genomics
January 2025
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
Background: The cryoinjury of semen during cryopreservation reduces sperm motility, constraining the application of artificial insemination (AI) in bovine reproduction. Some fertility markers, related to sperm motility before and after freezing have been identified. However, little is known about the biological mechanism through which freezing reduces sperm motility.
View Article and Find Full Text PDFReprod Sci
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Melatonin is mainly synthesized and secreted by pineal gland, and plays multiple functions, including its regulating effects on reproductive processes. Sperm capacitation is necessary for fertilization, but the effect of melatonin on mouse sperm capacitation remains to be elucidated. We thus investigated the roles of melatonin on capacitation by culturing the sperms from mouse cauda epididymis in the medium with different doses of melatonin.
View Article and Find Full Text PDFAnalyst
January 2025
Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
Although the glycosylation of viral proteins plays a critical role in the process of viral invasion into host cells, studies on the glycosylation of monkeypox virus (MPXV) structural proteins have not yet been reported. To investigate the importance of MPXV protein glycosylation, poly Ser-Arg (poly SR) materials capable of simultaneously enriching both -glycopeptides and -glycopeptides were synthesized by surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. The poly SR materials were evaluated using the digest mixture of standard proteins containing bovine fetuin and bovine serum albumin, and the digest of complex biological samples including bovine sperm tail lysate, mouse sperm tail lysate, mouse brain lysate, and human serum.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China. Electronic address:
Cryobiology
January 2025
Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador. Electronic address:
This study evaluated the effectiveness of Percoll® density gradient centrifugation (Percoll-DGC) for selecting bull epididymal sperm prior to conventional slow (CS) or ultra-rapid (UR) freezing and its effects on sperm quality. Fifteen pooled samples from 30 epididymides (2 different samples/pool) of 15 bulls were split into two aliquots assigned to either CS or UR freezing. Samples were either selected using Percoll-DGC (40/80 %) or left non-selected (control), resulting in four pre-freezing treatments: Percoll-CS, Control-CS, Percoll-UR, and Control-UR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!