Purpose: Skin injury in patients due to radiation exposure has been a complication in percutaneous coronary intervention (PCI) for a long time. To the best of our knowledge, there have been no reports comparing radiation dose by treatment area with diagnostic reference levels (DRLs) 2020, although the radiation dose varies by treatment area in PCI.

Methods: In this study, the treatment areas were classified into four segments (i.e., AHA #1-3, AHA #4, AHA #5-10, and AHA #11-15), and each segment was compared with DRLs 2020. This retrospective study included 984 consecutive patients with single-vessel disease and non-chronic total occlusion. PCI was performed on a single device.

Results: The median radiation dose was 1640.8 mGy, and the radiation dose for AHA #4 was 2732.0 mGy, which was significantly higher than the other treatment areas (p<0.001). In AHA #4, the radiation dose increased due to the heavy use of the left cranial view, and the patient background contributed to the increased lesion complexity. Therefore, it was challenging to evaluate AHA #4 and the other treatment areas with a uniform DRL value.

Conclusion: Establishing a subdivided index for each treatment area is crucial if DRLs are used as a reference during procedures and as a guide for dose optimization.

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.2022-1309DOI Listing

Publication Analysis

Top Keywords

radiation dose
20
treatment area
12
percutaneous coronary
8
coronary intervention
8
drls 2020
8
treatment areas
8
dose
5
treatment
5
radiation
5
aha
5

Similar Publications

Advances in Radiation Oncology in Soft Tissue Sarcoma.

Curr Oncol Rep

January 2025

Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA.

Purpose: To review recent advances with radiation therapy (RT) for soft tissue sarcomas (STS).

Recent Findings: Newer data showcases hypofractionated preoperative RT for soft tissue sarcomas treated with surgery to be safe and effective, however, long-term follow up data is pending. Hypofractionated and dose-escalated RT in patients with unresectable STS is also being studied, for which we remain optimistic given advances in RT planning approaches.

View Article and Find Full Text PDF

How I Do It: Management of Pleural-attached Pulmonary Nodules in Low-Dose CT Screening for Lung Cancer.

Radiology

January 2025

From the Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 (Y.Z., D.F.Y., C.I.H.); and Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (Y.Z.).

Lung cancer is the leading cause of cancer deaths globally. In various trials, the ability of low-dose CT screening to diagnose early lung cancers leads to high cure rates. It is widely accepted that the potential benefits of low-dose CT screening for lung cancer outweigh the harms.

View Article and Find Full Text PDF

Radiation therapy uses ionizing radiation (IR) to kill cancer cells. However, during radiotherapy normal cells are also damaged and killed by the generation of reactive oxygen species. Polyphenolic compounds are known to mitigate the damaging effects of radiation.

View Article and Find Full Text PDF

Background And Purpose: Bone metastasis is common for breast cancer and associated with poor prognosis. Currently, radiotherapy (RT) serves as the standard treatment for patients exhibiting symptoms of bone metastasis to alleviate pain. Whether earlier application of RT will better control bone metastasis remains unclear.

View Article and Find Full Text PDF

Highly hypofractionated biaxially rotational dynamic radiation therapy (BROAD-RT) for high-risk prostate cancer.

Cancer Sci

January 2025

Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

To report clinical outcomes following highly hypofractionated biaxially rotational dynamic radiation therapy (BROAD-RT), a unique radiation therapy method that facilitates non-coplanar volumetric-modulated arc therapy (VMAT) without the need to rotate the couch or reposition the patient, for high-risk prostate cancer (PCa) with simultaneous integrated boost (SIB) for intra-prostatic dominant lesions (IPDLs), we performed a single-center prospective pilot study. In this study, patients with high-risk PCa according to the D'Amico classification or those with cT3aN0M0 PCa were eligible. VMAT was performed using BROAD-RT, and a dose of 54 Gy in 15 fractions was prescribed for the prostate in combination with SIB for IPDLs at a dose of 57 Gy in 15 fractions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!