The quantitative analysis of biomass is essential for the research and application of moving bed biofilm reactors (MBBRs). However, the difficulty in measuring the attached growing biomass hinders the quantitative analysis of biofilm processes. In this study, a pilot-scale MBBR system was established to investigate biofilm evolution. The quantity of active heterotrophic and autotrophic biomass was measured throughout the entire culturing process. The total active biomass reached 250 mg COD/m when the biofilm attachment and detachment were balanced, and the corresponding autotrophic biomass contributes to as high as 17 % of the total biomass. Furthermore, quantitative image analysis was performed to obtain the thickness and morphological data of the biofilm evolution. Multivariate regression models were constructed based on the morphological data, which provided satisfactory prediction accuracy for the biofilm thickness and maturation. The most suitable carrier spots for biomass quantification and biofilm maturation were suggested. This work provided the life-cycle information of biofilm quantity and morphology of the MBBR, which contributes to the quantitative understanding of biofilm evolution at MBBRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159199 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
Background: Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China. Electronic address:
Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China.
Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.
View Article and Find Full Text PDFBiomolecules
January 2025
Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran.
The growing prevalence of antibiotic-resistant bacteria within the human microbiome has become a pressing global health crisis. While antibiotics have revolutionized medicine by significantly reducing mortality and enabling advanced medical interventions, their misuse and overuse have led to the emergence of resistant bacterial strains. Key resistance mechanisms include genetic mutations, horizontal gene transfer, and biofilm formation, with the human microbiota acting as a reservoir for antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
is considered one of the prioritized ESKAPE microorganisms for the research and development of novel treatments by the World Health Organization, especially because of its remarkable persistence and drug resistance. In this review, we describe how this can be acquired by the enzymatic degradation of antibiotics, target site modification, altered membrane permeability, multidrug efflux pumps, and their ability to form biofilms. Also, the evolution of drug resistance in , which is mainly driven by mobile genetic elements, is reported, with particular reference to plasmid-associated resistance, resistance islands, and insertion sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!