A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust deep learning-based forward dose calculations for VMAT on the 1.5T MR-linac. | LitMetric

Robust deep learning-based forward dose calculations for VMAT on the 1.5T MR-linac.

Phys Med Biol

Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands.

Published: November 2022

In this work we present a framework for robust deep learning-based VMAT forward dose calculations for the 1.5T MR-linac. A convolutional neural network was trained on the dose of individual multi-leaf-collimator VMAT segments and was used to predict the dose per segment for a set of MR-linac-deliverable VMAT test plans. The training set consisted of prostate, rectal, lung and esophageal tumour data. All patients were previously treated in our clinic with VMAT on a conventional linac. The clinical data were converted to an MR-linac environment prior to training. During training time, gantry and collimator angles were randomized for each training sample, while the multi-leaf-collimator shapes were rigidly shifted to ensure robust learning. A Monte Carlo dose engine was used for the generation of the ground truth data at 1% statistical uncertainty per control point. For a set of 17 MR-linac-deliverable VMAT test plans, generated on a research treatment planning system, our method predicted highly accurate dose distributions, reporting 99.7% ± 0.5% for the full plan prediction at the 3%/3 mm gamma criterion. Additional evaluation on previously unseen IMRT patients passed all clinical requirements resulting in 99.0% ± 0.6% for the 3%/3 mm analysis. The overall performance of our method makes it a promising plan validation solution for IMRT and VMAT workflows, robust to tumour anatomies and tissue density variations.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac97d8DOI Listing

Publication Analysis

Top Keywords

robust deep
8
deep learning-based
8
forward dose
8
dose calculations
8
15t mr-linac
8
set mr-linac-deliverable
8
mr-linac-deliverable vmat
8
vmat test
8
test plans
8
vmat
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!