Objectives: Good-quality nucleic acid extraction from formalin-fixed, paraffin-embedded (FFPE) specimens remains a challenge in molecular-oncopathology practice. This study evaluates the efficacy of an in-house developed FFPE extraction buffer compared with other commercially available kits.
Methods: Eighty FFPE specimens processed in different surgical pathology laboratories formed the study sample. DNA extraction was performed using three commercial kits and the in-house developed FFPE extraction buffer. DNA yield was quantified by a NanoDrop spectrophotometer and Qubit Fluorometer, and its purity was measured by the 260/280-nm ratio. A fragment analyzer system was used for accurate sizing of DNA fragments of FFPE DNA. The downstream effects of all extraction methods were evaluated by polymerase chain reaction (PCR) and Sanger sequencing.
Results: In comparison with the commercial kits, the in-house buffer yielded higher DNA quantity and quality number (P < .0001). In addition, DNA integrity and fragment size were preserved in a significantly greater number of samples isolated with the in-house buffer (P < .05). The target PCR amplification rate with the in-house buffer extracted samples was also significantly higher, with 98% of the samples showing interpretable sequencing results.
Conclusions: The in-house developed FFPE extraction buffer performed superior to other methods in terms of suitability for downstream applications, time, cost-efficiency, and ease of performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ajcp/aqac122 | DOI Listing |
Phys Med
January 2025
Department of Physics "A. Pontremoli", University of Milan & INFN sez. Milano, Milano, Italy. Electronic address:
Purpose: This work aims at investigating, via in-silico evaluations, the noise properties of an innovative scanning geometry in cone-beam CT (CBCT): eCT. This scanning geometry substitutes each of the projections in CBCT with a series of collimated projections acquired over an oscillating scanning trajectory. The analysis focused on the impact of the number of the projections per period (PP) on the noise characteristics.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Radiation Oncology, The Third Affiliated Hospital, Sun Yan-Sen University, Guangzhou 510630, China. Electronic address:
A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: Rodent models have been proved pivotal in Alzheimer's disease (AD) research. Nevertheless, the use of models that only recapitulate one aspect of AD neuropathology, and of early time points that might be excluding important features such as age-dependent inflammation and senescence, could hinder the development of effective AD therapeutics. Several tau immunotherapies are currently undergoing clinical trial.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indianapolis, IN, USA.
Background: The National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD) is continuing to develop a bank of induced pluripotent stem cells (iPSCs) that are available by request to the Alzheimer's disease (AD) research community.
Methods: As part of the pipeline for quality control of received cell lines, DNA was extracted for all lines and was submitted for whole genome sequencing (WGS). Paired-end WGS data was generated using the Illumina NovaSeq 6000 and processed following GATK best practices using the Sentieon pipeline.
Background: Neuropathologic inclusions formed by hyperphosphorylated protein tau in the brain are a hallmark of Alzheimer's disease and other human neurodegenerative disorders commonly referred to as tauopathies. Tau lesions differ in their disease-specific morphological presentations, affected cell type, subcellular compartments and tau isoforms present in the inclusions. In addition, tau filaments isolated from different tauopathies have distinct fibrillar structures that potentially underlie the morphological diversity of tau lesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!